LSST Applications  21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
ScaledBasis2d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
24 
26 
27 namespace lsst { namespace geom { namespace polynomials {
28 
29 template <typename Basis>
30 class Function2d;
31 
42 template <typename Nested>
44 public:
45 
48 
51 
53  using Workspace = typename Nested::Workspace;
54 
56  using IndexRange = typename Nested::IndexRange;
57 
59  explicit ScaledBasis2d(Nested const & nested, Scaling2d const & scaling) :
60  _nested(nested),
61  _scaling(scaling)
62  {}
63 
78  _nested(order),
79  _scaling(makeUnitRangeScaling2d(box))
80  {}
81 
83  ScaledBasis2d(ScaledBasis2d const &) = default;
84 
87 
89  ScaledBasis2d & operator=(ScaledBasis2d const &) = default;
90 
93 
95  Nested const & getNested() const noexcept { return _nested; }
96 
98  Scaling2d const & getScaling() const noexcept { return _scaling; }
99 
101  std::size_t getOrder() const { return getNested().getOrder(); }
102 
104  std::size_t size() const { return getNested().size(); }
105 
112  Scaled scaled(Scaling2d const & first) const {
113  return getNested().scaled(first.then(getScaling()));
114  }
115 
117  int index(int x, int y) const { return getNested().index(x, y); }
118 
139  IndexRange getIndices() const { return getNested().getIndices(); }
140 
142  Workspace makeWorkspace() const { return getNested().makeWorkspace();}
143 
162  template <typename Vector>
163  double sumWith(geom::Point2D const & point, Vector const & coefficients,
164  SumMode mode=SumMode::FAST) const {
165  return getNested().sumWith(getScaling().applyForward(point), coefficients, mode);
166  }
167 
169  template <typename Vector>
170  double sumWith(geom::Point2D const & point, Vector const & coefficients,
171  Workspace & workspace, SumMode mode=SumMode::FAST) const {
172  return getNested().sumWith(getScaling().applyForward(point), coefficients, workspace, mode);
173  }
174 
185  template <typename Vector>
186  void fill(geom::Point2D const & point, Vector && basis) const {
187  return getNested().fill(getScaling().applyForward(point),
188  std::forward<Vector>(basis));
189  }
190 
192  template <typename Vector>
193  void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
194  return getNested().fill(getScaling().applyForward(point),
195  std::forward<Vector>(basis),
196  workspace);
197  }
198 
199 private:
200  Nested _nested;
201  Scaling2d _scaling;
202 };
203 
204 }}} // namespace lsst::geom::polynomials
205 
206 #endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
ndarray::Array< double const, 2, 2 > coefficients
double x
table::Key< double > scaling
int y
Definition: SpanSet.cc:48
table::Key< int > nested
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
A 2-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis2d.h:43
typename Nested::Workspace Workspace
The type returned by makeWorkspace().
Definition: ScaledBasis2d.h:53
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients (external workspace version).
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
Evaluate the basis at a given point (external workspace version).
ScaledBasis2d(ScaledBasis2d const &)=default
Default copy constructor.
ScaledBasis2d(Nested const &nested, Scaling2d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis2d.h:59
ScaledBasis2d & operator=(ScaledBasis2d const &)=default
Default copy assignment.
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis2d.h:95
ScaledBasis2d(std::size_t order, Box2D const &box)
Construct a basis that remaps the given box to [-1, 1]x[-1, 1] before evaluating the nested polynomia...
Definition: ScaledBasis2d.h:77
IndexRange getIndices() const
Return a range of iterators that dereference to Index2d.
ScaledBasis2d(ScaledBasis2d &&)=default
Default move constructor.
Workspace makeWorkspace() const
Allocate a workspace that can be passed to sumWith() and fill() to avoid repeated memory allocations.
std::size_t size() const
Return the number of elements in the basis.
Scaled scaled(Scaling2d const &first) const
Return a scaled basis that delegates to a copy of this.
void fill(geom::Point2D const &point, Vector &&basis) const
Evaluate the basis at a given point.
ScaledBasis2d & operator=(ScaledBasis2d &&)=default
Default move assignment.
std::size_t getOrder() const
Return the order of the basis.
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
Scaling2d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis2d.h:98
int index(int x, int y) const
Return the flattened index of the basis function with the given x and y orders.
typename Nested::IndexRange IndexRange
The type returned by getIndices().
Definition: ScaledBasis2d.h:56
A 2-d separable affine transform that can be used to map one interval to another.
Definition: Scaling2d.h:48
Scaling2d makeUnitRangeScaling2d(geom::Box2D const &box)
Return a Scaling1d that maps the given box to [-1, 1]x[-1, 1].
Definition: Scaling2d.h:112
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
A base class for image defects.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
table::Key< int > order