LSST Applications  21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
imageMapReduce.py
Go to the documentation of this file.
1 #
2 # LSST Data Management System
3 # Copyright 2016 AURA/LSST.
4 #
5 # This product includes software developed by the
6 # LSST Project (http://www.lsst.org/).
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the LSST License Statement and
19 # the GNU General Public License along with this program. If not,
20 # see <https://www.lsstcorp.org/LegalNotices/>.
21 #
22 
23 import numpy as np
24 import abc
25 
26 import lsst.afw.image as afwImage
27 import lsst.afw.table as afwTable
28 import lsst.geom as geom
29 import lsst.meas.algorithms as measAlg
30 import lsst.pex.config as pexConfig
31 import lsst.pipe.base as pipeBase
32 
33 __all__ = ("ImageMapReduceTask", "ImageMapReduceConfig",
34  "ImageMapper", "ImageMapperConfig",
35  "ImageReducer", "ImageReducerConfig")
36 
37 
38 """Tasks for processing an exposure via processing on
39 multiple sub-exposures and then collecting the results
40 to either re-stitch the sub-exposures back into a new
41 exposure, or return summary results for each sub-exposure.
42 
43 This provides a framework for arbitrary mapper-reducer
44 operations on an exposure by implementing simple operations in
45 subTasks. It currently is not parallelized, although it could be in
46 the future. It does enable operations such as spatially-mapped
47 processing on a grid across an image, processing regions surrounding
48 centroids (such as for PSF processing), etc.
49 
50 It is implemented as primary Task, `ImageMapReduceTask` which contains
51 two subtasks, `ImageMapper` and `ImageReducer`.
52 `ImageMapReduceTask` configures the centroids and sub-exposure
53 dimensions to be processed, and then calls the `run` methods of the
54 `ImageMapper` and `ImageReducer` on those sub-exposures.
55 `ImageMapReduceTask` may be configured with a list of sub-exposure
56 centroids (`config.cellCentroidsX` and `config.cellCentroidsY`) and a
57 single pair of bounding boxes defining their dimensions, or a set of
58 parameters defining a regular grid of centroids (`config.gridStepX`
59 and `config.gridStepY`).
60 
61 `ImageMapper` is an abstract class and must be subclassed with
62 an implemented `run` method to provide the desired operation for
63 processing individual sub-exposures. It is called from
64 `ImageMapReduceTask.run`, and may return a new, processed sub-exposure
65 which is to be "stitched" back into a new resulting larger exposure
66 (depending on the configured `ImageMapReduceTask.mapper`);
67 otherwise if it does not return an lsst.afw.image.Exposure, then the results are
68 passed back directly to the caller.
69 
70 `ImageReducer` will either stitch the `mapperResults` list of
71 results generated by the `ImageMapper` together into a new
72 Exposure (by default) or pass it through to the
73 caller. `ImageReducer` has an implemented `run` method for
74 basic reducing operations (`reduceOperation`) such as `average` (which
75 will average all overlapping pixels from sub-exposures produced by the
76 `ImageMapper` into the new exposure). Another notable
77 implemented `reduceOperation` is 'none', in which case the
78 `mapperResults` list is simply returned directly.
79 """
80 
81 
82 class ImageMapperConfig(pexConfig.Config):
83  """Configuration parameters for ImageMapper
84  """
85  pass
86 
87 
88 class ImageMapper(pipeBase.Task, metaclass=abc.ABCMeta):
89  """Abstract base class for any task that is to be
90  used as `ImageMapReduceConfig.mapper`.
91 
92  Notes
93  -----
94  An `ImageMapper` is responsible for processing individual
95  sub-exposures in its `run` method, which is called from
96  `ImageMapReduceTask.run`. `run` may return a processed new
97  sub-exposure which can be be "stitched" back into a new resulting
98  larger exposure (depending on the configured
99  `ImageReducer`); otherwise if it does not return an
100  lsst.afw.image.Exposure, then the
101  `ImageReducer.config.reducer.reduceOperation`
102  should be set to 'none' and the result will be propagated
103  as-is.
104  """
105  ConfigClass = ImageMapperConfig
106  _DefaultName = "ip_diffim_ImageMapper"
107 
108  @abc.abstractmethod
109  def run(self, subExposure, expandedSubExposure, fullBBox, **kwargs):
110  """Perform operation on `subExposure`.
111 
112  To be implemented by subclasses. See class docstring for more
113  details. This method is given the `subExposure` which
114  is to be operated upon, and an `expandedSubExposure` which
115  will contain `subExposure` with additional surrounding
116  pixels. This allows for, for example, convolutions (which
117  should be performed on `expandedSubExposure`), to prevent the
118  returned sub-exposure from containing invalid pixels.
119 
120  This method may return a new, processed sub-exposure which can
121  be be "stitched" back into a new resulting larger exposure
122  (depending on the paired, configured `ImageReducer`);
123  otherwise if it does not return an lsst.afw.image.Exposure, then the
124  `ImageReducer.config.mapper.reduceOperation`
125  should be set to 'none' and the result will be propagated
126  as-is.
127 
128  Parameters
129  ----------
130  subExposure : `lsst.afw.image.Exposure`
131  the sub-exposure upon which to operate
132  expandedSubExposure : `lsst.afw.image.Exposure`
133  the expanded sub-exposure upon which to operate
134  fullBBox : `lsst.geom.Box2I`
135  the bounding box of the original exposure
136  kwargs :
137  additional keyword arguments propagated from
138  `ImageMapReduceTask.run`.
139 
140  Returns
141  -------
142  result : `lsst.pipe.base.Struct`
143  A structure containing the result of the `subExposure` processing,
144  which may itself be of any type. See above for details. If it is an
145  `lsst.afw.image.Exposure` (processed sub-exposure), then the name in
146  the Struct should be 'subExposure'. This is implemented here as a
147  pass-through example only.
148  """
149  return pipeBase.Struct(subExposure=subExposure)
150 
151 
152 class ImageReducerConfig(pexConfig.Config):
153  """Configuration parameters for the ImageReducer
154  """
155  reduceOperation = pexConfig.ChoiceField(
156  dtype=str,
157  doc="""Operation to use for reducing subimages into new image.""",
158  default="average",
159  allowed={
160  "none": """simply return a list of values and don't re-map results into
161  a new image (noop operation)""",
162  "copy": """copy pixels directly from subimage into correct location in
163  new exposure (potentially non-deterministic for overlaps)""",
164  "sum": """add pixels from overlaps (probably never wanted; used for testing)
165  into correct location in new exposure""",
166  "average": """same as copy, but also average pixels from overlapped regions
167  (NaNs ignored)""",
168  "coaddPsf": """Instead of constructing an Exposure, take a list of returned
169  PSFs and use CoaddPsf to construct a single PSF that covers the
170  entire input exposure""",
171  }
172  )
173  badMaskPlanes = pexConfig.ListField(
174  dtype=str,
175  doc="""Mask planes to set for invalid pixels""",
176  default=('INVALID_MAPREDUCE', 'BAD', 'NO_DATA')
177  )
178 
179 
180 class ImageReducer(pipeBase.Task):
181  """Base class for any 'reduce' task that is to be
182  used as `ImageMapReduceConfig.reducer`.
183 
184  Basic reduce operations are provided by the `run` method
185  of this class, to be selected by its config.
186  """
187  ConfigClass = ImageReducerConfig
188  _DefaultName = "ip_diffim_ImageReducer"
189 
190  def run(self, mapperResults, exposure, **kwargs):
191  """Reduce a list of items produced by `ImageMapper`.
192 
193  Either stitch the passed `mapperResults` list
194  together into a new Exposure (default) or pass it through
195  (if `self.config.reduceOperation` is 'none').
196 
197  If `self.config.reduceOperation` is not 'none', then expect
198  that the `pipeBase.Struct`s in the `mapperResults` list
199  contain sub-exposures named 'subExposure', to be stitched back
200  into a single Exposure with the same dimensions, PSF, and mask
201  as the input `exposure`. Otherwise, the `mapperResults` list
202  is simply returned directly.
203 
204  Parameters
205  ----------
206  mapperResults : `list`
207  list of `lsst.pipe.base.Struct` returned by `ImageMapper.run`.
208  exposure : `lsst.afw.image.Exposure`
209  the original exposure which is cloned to use as the
210  basis for the resulting exposure (if
211  ``self.config.mapper.reduceOperation`` is not 'None')
212  kwargs :
213  additional keyword arguments propagated from
214  `ImageMapReduceTask.run`.
215 
216  Returns
217  -------
218  A `lsst.pipe.base.Struct` containing either an `lsst.afw.image.Exposure`
219  (named 'exposure') or a list (named 'result'),
220  depending on `config.reduceOperation`.
221 
222  Notes
223  -----
224  1. This currently correctly handles overlapping sub-exposures.
225  For overlapping sub-exposures, use `config.reduceOperation='average'`.
226  2. This correctly handles varying PSFs, constructing the resulting
227  exposure's PSF via CoaddPsf (DM-9629).
228 
229  Known issues
230 
231  1. To be done: correct handling of masks (nearly there)
232  2. This logic currently makes *two* copies of the original exposure
233  (one here and one in `mapper.run()`). Possibly of concern
234  for large images on memory-constrained systems.
235  """
236  # No-op; simply pass mapperResults directly to ImageMapReduceTask.run
237  if self.config.reduceOperation == 'none':
238  return pipeBase.Struct(result=mapperResults)
239 
240  if self.config.reduceOperation == 'coaddPsf':
241  # Each element of `mapperResults` should contain 'psf' and 'bbox'
242  coaddPsf = self._constructPsf_constructPsf(mapperResults, exposure)
243  return pipeBase.Struct(result=coaddPsf)
244 
245  newExp = exposure.clone()
246  newMI = newExp.getMaskedImage()
247 
248  reduceOp = self.config.reduceOperation
249  if reduceOp == 'copy':
250  weights = None
251  newMI.getImage()[:, :] = np.nan
252  newMI.getVariance()[:, :] = np.nan
253  else:
254  newMI.getImage()[:, :] = 0.
255  newMI.getVariance()[:, :] = 0.
256  if reduceOp == 'average': # make an array to keep track of weights
257  weights = afwImage.ImageI(newMI.getBBox())
258 
259  for item in mapperResults:
260  item = item.subExposure # Expected named value in the pipeBase.Struct
261  if not (isinstance(item, afwImage.ExposureF) or isinstance(item, afwImage.ExposureI)
262  or isinstance(item, afwImage.ExposureU) or isinstance(item, afwImage.ExposureD)):
263  raise TypeError("""Expecting an Exposure type, got %s.
264  Consider using `reduceOperation="none".""" % str(type(item)))
265  subExp = newExp.Factory(newExp, item.getBBox())
266  subMI = subExp.getMaskedImage()
267  patchMI = item.getMaskedImage()
268  isValid = ~np.isnan(patchMI.getImage().getArray() * patchMI.getVariance().getArray())
269 
270  if reduceOp == 'copy':
271  subMI.getImage().getArray()[isValid] = patchMI.getImage().getArray()[isValid]
272  subMI.getVariance().getArray()[isValid] = patchMI.getVariance().getArray()[isValid]
273  subMI.getMask().getArray()[:, :] |= patchMI.getMask().getArray()
274 
275  if reduceOp == 'sum' or reduceOp == 'average': # much of these two options is the same
276  subMI.getImage().getArray()[isValid] += patchMI.getImage().getArray()[isValid]
277  subMI.getVariance().getArray()[isValid] += patchMI.getVariance().getArray()[isValid]
278  subMI.getMask().getArray()[:, :] |= patchMI.getMask().getArray()
279  if reduceOp == 'average':
280  # wtsView is a view into the `weights` Image
281  wtsView = afwImage.ImageI(weights, item.getBBox())
282  wtsView.getArray()[isValid] += 1
283 
284  # New mask plane - for debugging map-reduced images
285  mask = newMI.getMask()
286  for m in self.config.badMaskPlanes:
287  mask.addMaskPlane(m)
288  bad = mask.getPlaneBitMask(self.config.badMaskPlanes)
289 
290  isNan = np.where(np.isnan(newMI.getImage().getArray() * newMI.getVariance().getArray()))
291  if len(isNan[0]) > 0:
292  # set mask to INVALID for pixels where produced exposure is NaN
293  mask.getArray()[isNan[0], isNan[1]] |= bad
294 
295  if reduceOp == 'average':
296  wts = weights.getArray().astype(np.float)
297  self.log.info('AVERAGE: Maximum overlap: %f', np.nanmax(wts))
298  self.log.info('AVERAGE: Average overlap: %f', np.nanmean(wts))
299  self.log.info('AVERAGE: Minimum overlap: %f', np.nanmin(wts))
300  wtsZero = np.equal(wts, 0.)
301  wtsZeroInds = np.where(wtsZero)
302  wtsZeroSum = len(wtsZeroInds[0])
303  self.log.info('AVERAGE: Number of zero pixels: %f (%f%%)', wtsZeroSum,
304  wtsZeroSum * 100. / wtsZero.size)
305  notWtsZero = ~wtsZero
306  tmp = newMI.getImage().getArray()
307  np.divide(tmp, wts, out=tmp, where=notWtsZero)
308  tmp = newMI.getVariance().getArray()
309  np.divide(tmp, wts, out=tmp, where=notWtsZero)
310  if len(wtsZeroInds[0]) > 0:
311  newMI.getImage().getArray()[wtsZeroInds] = np.nan
312  newMI.getVariance().getArray()[wtsZeroInds] = np.nan
313  # set mask to something for pixels where wts == 0.
314  # happens sometimes if operation failed on a certain subexposure
315  mask.getArray()[wtsZeroInds] |= bad
316 
317  # Not sure how to construct a PSF when reduceOp=='copy'...
318  if reduceOp == 'sum' or reduceOp == 'average':
319  psf = self._constructPsf_constructPsf(mapperResults, exposure)
320  newExp.setPsf(psf)
321 
322  return pipeBase.Struct(exposure=newExp)
323 
324  def _constructPsf(self, mapperResults, exposure):
325  """Construct a CoaddPsf based on PSFs from individual subExposures
326 
327  Currently uses (and returns) a CoaddPsf. TBD if we want to
328  create a custom subclass of CoaddPsf to differentiate it.
329 
330  Parameters
331  ----------
332  mapperResults : `list`
333  list of `pipeBase.Struct` returned by `ImageMapper.run`.
334  For this to work, each element of `mapperResults` must contain
335  a `subExposure` element, from which the component Psfs are
336  extracted (thus the reducerTask cannot have
337  `reduceOperation = 'none'`.
338  exposure : `lsst.afw.image.Exposure`
339  the original exposure which is used here solely for its
340  bounding-box and WCS.
341 
342  Returns
343  -------
344  psf : `lsst.meas.algorithms.CoaddPsf`
345  A psf constructed from the PSFs of the individual subExposures.
346  """
347  schema = afwTable.ExposureTable.makeMinimalSchema()
348  schema.addField("weight", type="D", doc="Coadd weight")
349  mycatalog = afwTable.ExposureCatalog(schema)
350 
351  # We're just using the exposure's WCS (assuming that the subExposures'
352  # WCSs are the same, which they better be!).
353  wcsref = exposure.getWcs()
354  for i, res in enumerate(mapperResults):
355  record = mycatalog.getTable().makeRecord()
356  if 'subExposure' in res.getDict():
357  subExp = res.subExposure
358  if subExp.getWcs() != wcsref:
359  raise ValueError('Wcs of subExposure is different from exposure')
360  record.setPsf(subExp.getPsf())
361  record.setWcs(subExp.getWcs())
362  record.setBBox(subExp.getBBox())
363  elif 'psf' in res.getDict():
364  record.setPsf(res.psf)
365  record.setWcs(wcsref)
366  record.setBBox(res.bbox)
367  record['weight'] = 1.0
368  record['id'] = i
369  mycatalog.append(record)
370 
371  # create the coaddpsf
372  psf = measAlg.CoaddPsf(mycatalog, wcsref, 'weight')
373  return psf
374 
375 
376 class ImageMapReduceConfig(pexConfig.Config):
377  """Configuration parameters for the ImageMapReduceTask
378  """
379  mapper = pexConfig.ConfigurableField(
380  doc="Task to run on each subimage",
381  target=ImageMapper,
382  )
383 
384  reducer = pexConfig.ConfigurableField(
385  doc="Task to combine results of mapper task",
386  target=ImageReducer,
387  )
388 
389  # Separate cellCentroidsX and cellCentroidsY since pexConfig.ListField accepts limited dtypes
390  # (i.e., no Point2D). The resulting set of centroids is the "vertical stack" of
391  # `cellCentroidsX` and `cellCentroidsY`, i.e. for (1,2), (3,4) respectively, the
392  # resulting centroids are ((1,3), (2,4)).
393  cellCentroidsX = pexConfig.ListField(
394  dtype=float,
395  doc="""Input X centroids around which to place subimages.
396  If None, use grid config options below.""",
397  optional=True,
398  default=None
399  )
400 
401  cellCentroidsY = pexConfig.ListField(
402  dtype=float,
403  doc="""Input Y centroids around which to place subimages.
404  If None, use grid config options below.""",
405  optional=True,
406  default=None
407  )
408 
409  cellSizeX = pexConfig.Field(
410  dtype=float,
411  doc="""Dimensions of each grid cell in x direction""",
412  default=10.,
413  check=lambda x: x > 0.
414  )
415 
416  cellSizeY = pexConfig.Field(
417  dtype=float,
418  doc="""Dimensions of each grid cell in y direction""",
419  default=10.,
420  check=lambda x: x > 0.
421  )
422 
423  gridStepX = pexConfig.Field(
424  dtype=float,
425  doc="""Spacing between subsequent grid cells in x direction. If equal to
426  cellSizeX, then there is no overlap in the x direction.""",
427  default=10.,
428  check=lambda x: x > 0.
429  )
430 
431  gridStepY = pexConfig.Field(
432  dtype=float,
433  doc="""Spacing between subsequent grid cells in y direction. If equal to
434  cellSizeY, then there is no overlap in the y direction.""",
435  default=10.,
436  check=lambda x: x > 0.
437  )
438 
439  borderSizeX = pexConfig.Field(
440  dtype=float,
441  doc="""Dimensions of grid cell border in +/- x direction, to be used
442  for generating `expandedSubExposure`.""",
443  default=5.,
444  check=lambda x: x > 0.
445  )
446 
447  borderSizeY = pexConfig.Field(
448  dtype=float,
449  doc="""Dimensions of grid cell border in +/- y direction, to be used
450  for generating `expandedSubExposure`.""",
451  default=5.,
452  check=lambda x: x > 0.
453  )
454 
455  adjustGridOption = pexConfig.ChoiceField(
456  dtype=str,
457  doc="""Whether and how to adjust grid to fit evenly within, and cover entire
458  image""",
459  default="spacing",
460  allowed={
461  "spacing": "adjust spacing between centers of grid cells (allowing overlaps)",
462  "size": "adjust the sizes of the grid cells (disallowing overlaps)",
463  "none": "do not adjust the grid sizes or spacing"
464  }
465  )
466 
467  scaleByFwhm = pexConfig.Field(
468  dtype=bool,
469  doc="""Scale cellSize/gridStep/borderSize/overlapSize by PSF FWHM rather
470  than pixels?""",
471  default=True
472  )
473 
474  returnSubImages = pexConfig.Field(
475  dtype=bool,
476  doc="""Return the input subExposures alongside the processed ones (for debugging)""",
477  default=False
478  )
479 
480  ignoreMaskPlanes = pexConfig.ListField(
481  dtype=str,
482  doc="""Mask planes to ignore for sigma-clipped statistics""",
483  default=("INTRP", "EDGE", "DETECTED", "SAT", "CR", "BAD", "NO_DATA", "DETECTED_NEGATIVE")
484  )
485 
486 
487 class ImageMapReduceTask(pipeBase.Task):
488  """Split an Exposure into subExposures (optionally on a grid) and
489  perform the same operation on each.
490 
491  Perform 'simple' operations on a gridded set of subExposures of a
492  larger Exposure, and then (by default) have those subExposures
493  stitched back together into a new, full-sized image.
494 
495  Contrary to the expectation given by its name, this task does not
496  perform these operations in parallel, although it could be updatd
497  to provide such functionality.
498 
499  The actual operations are performed by two subTasks passed to the
500  config. The exposure passed to this task's `run` method will be
501  divided, and those subExposures will be passed to the subTasks,
502  along with the original exposure. The reducing operation is
503  performed by the second subtask.
504  """
505  ConfigClass = ImageMapReduceConfig
506  _DefaultName = "ip_diffim_imageMapReduce"
507 
508  def __init__(self, *args, **kwargs):
509  """Create the image map-reduce task
510 
511  Parameters
512  ----------
513  args :
514  arguments to be passed to
515  `lsst.pipe.base.task.Task.__init__`
516  kwargs :
517  additional keyword arguments to be passed to
518  `lsst.pipe.base.task.Task.__init__`
519  """
520  pipeBase.Task.__init__(self, *args, **kwargs)
521 
522  self.boxes0boxes0 = self.boxes1boxes1 = None
523  self.makeSubtask("mapper")
524  self.makeSubtask("reducer")
525 
526  @pipeBase.timeMethod
527  def run(self, exposure, **kwargs):
528  """Perform a map-reduce operation on the given exposure.
529 
530  Split the exposure into sub-expposures on a grid (parameters
531  given by `ImageMapReduceConfig`) and perform
532  `config.mapper.run()` on each. Reduce the resulting
533  sub-exposures by running `config.reducer.run()`.
534 
535  Parameters
536  ----------
537  exposure : `lsst.afw.image.Exposure`
538  the full exposure to process
539  kwargs :
540  additional keyword arguments to be passed to
541  subtask `run` methods
542 
543  Returns
544  -------
545  output of `reducer.run()`
546 
547  """
548  self.log.info("Mapper sub-task: %s", self.mapper._DefaultName)
549  mapperResults = self._runMapper_runMapper(exposure, **kwargs)
550  self.log.info("Reducer sub-task: %s", self.reducer._DefaultName)
551  result = self._reduceImage_reduceImage(mapperResults, exposure, **kwargs)
552  return result
553 
554  def _runMapper(self, exposure, doClone=False, **kwargs):
555  """Perform `mapper.run` on each sub-exposure
556 
557  Perform `mapper.run` on each sub-exposure across a
558  grid on `exposure` generated by `_generateGrid`. Also pass to
559  `mapper.run` an 'expanded sub-exposure' containing the
560  same region as the sub-exposure but with an expanded bounding box.
561 
562  Parameters
563  ----------
564  exposure : `lsst.afw.image.Exposure`
565  the original exposure which is used as the template
566  doClone : `bool`
567  if True, clone the subimages before passing to subtask;
568  in that case, the sub-exps do not have to be considered as read-only
569  kwargs :
570  additional keyword arguments to be passed to
571  `mapper.run` and `self._generateGrid`, including `forceEvenSized`.
572 
573  Returns
574  -------
575  a list of `pipeBase.Struct`s as returned by `mapper.run`.
576  """
577  if self.boxes0boxes0 is None:
578  self._generateGrid_generateGrid(exposure, **kwargs) # possibly pass `forceEvenSized`
579  if len(self.boxes0boxes0) != len(self.boxes1boxes1):
580  raise ValueError('Bounding boxes list and expanded bounding boxes list are of different lengths')
581 
582  self.log.info("Processing %d sub-exposures", len(self.boxes0boxes0))
583  mapperResults = []
584  for box0, box1 in zip(self.boxes0boxes0, self.boxes1boxes1):
585  subExp = exposure.Factory(exposure, box0)
586  expandedSubExp = exposure.Factory(exposure, box1)
587  if doClone:
588  subExp = subExp.clone()
589  expandedSubExp = expandedSubExp.clone()
590  result = self.mapper.run(subExp, expandedSubExp, exposure.getBBox(), **kwargs)
591  if self.config.returnSubImages:
592  toAdd = pipeBase.Struct(inputSubExposure=subExp,
593  inputExpandedSubExposure=expandedSubExp)
594  result.mergeItems(toAdd, 'inputSubExposure', 'inputExpandedSubExposure')
595  mapperResults.append(result)
596 
597  return mapperResults
598 
599  def _reduceImage(self, mapperResults, exposure, **kwargs):
600  """Reduce/merge a set of sub-exposures into a final result
601 
602  Return an exposure of the same dimensions as `exposure`.
603  `mapperResults` is expected to have been produced by `runMapper`.
604 
605  Parameters
606  ----------
607  mapperResults : `list`
608  `list` of `lsst.pipe.base.Struct`, each of which was produced by
609  `config.mapper`
610  exposure : `lsst.afw.image.Exposure`
611  the original exposure
612  **kwargs
613  additional keyword arguments
614 
615  Returns
616  -------
617  Output of `reducer.run` which is a `pipeBase.Struct`.
618  """
619  result = self.reducer.run(mapperResults, exposure, **kwargs)
620  return result
621 
622  def _generateGrid(self, exposure, forceEvenSized=False, **kwargs):
623  """Generate two lists of bounding boxes that evenly grid `exposure`
624 
625  Unless the config was provided with `cellCentroidsX` and
626  `cellCentroidsY`, grid (subimage) centers are spaced evenly
627  by gridStepX/Y. Then the grid is adjusted as little as
628  possible to evenly cover the input exposure (if
629  adjustGridOption is not 'none'). Then the second set of
630  bounding boxes is expanded by borderSizeX/Y. The expanded
631  bounding boxes are adjusted to ensure that they intersect the
632  exposure's bounding box. The resulting lists of bounding boxes
633  and corresponding expanded bounding boxes are set to
634  `self.boxes0`, `self.boxes1`.
635 
636  Parameters
637  ----------
638  exposure : `lsst.afw.image.Exposure`
639  input exposure whose full bounding box is to be evenly gridded.
640  forceEvenSized : `bool`
641  force grid elements to have even-valued x- and y- dimensions?
642  (Potentially useful if doing Fourier transform of subExposures.)
643  """
644  # kwargs are ignored, but necessary to enable optional passing of
645  # `forceEvenSized` from `_runMapper`.
646  bbox = exposure.getBBox()
647 
648  # Extract the config parameters for conciseness.
649  cellCentroidsX = self.config.cellCentroidsX
650  cellCentroidsY = self.config.cellCentroidsY
651  cellSizeX = self.config.cellSizeX
652  cellSizeY = self.config.cellSizeY
653  gridStepX = self.config.gridStepX
654  gridStepY = self.config.gridStepY
655  borderSizeX = self.config.borderSizeX
656  borderSizeY = self.config.borderSizeY
657  adjustGridOption = self.config.adjustGridOption
658  scaleByFwhm = self.config.scaleByFwhm
659 
660  if cellCentroidsX is None or len(cellCentroidsX) <= 0:
661  # Not given centroids; construct them from cellSize/gridStep
662 
663  psfFwhm = (exposure.getPsf().computeShape().getDeterminantRadius()
664  * 2.*np.sqrt(2.*np.log(2.)))
665  if scaleByFwhm:
666  self.log.info("Scaling grid parameters by %f", psfFwhm)
667 
668  def rescaleValue(val):
669  if scaleByFwhm:
670  return np.rint(val*psfFwhm).astype(int)
671  else:
672  return np.rint(val).astype(int)
673 
674  cellSizeX = rescaleValue(cellSizeX)
675  cellSizeY = rescaleValue(cellSizeY)
676  gridStepX = rescaleValue(gridStepX)
677  gridStepY = rescaleValue(gridStepY)
678  borderSizeX = rescaleValue(borderSizeX)
679  borderSizeY = rescaleValue(borderSizeY)
680 
681  nGridX = bbox.getWidth()//gridStepX
682  nGridY = bbox.getHeight()//gridStepY
683 
684  if adjustGridOption == 'spacing':
685  # Readjust spacings so that they fit perfectly in the image.
686  nGridX = bbox.getWidth()//cellSizeX + 1
687  nGridY = bbox.getHeight()//cellSizeY + 1
688  xLinSpace = np.linspace(cellSizeX//2, bbox.getWidth() - cellSizeX//2, nGridX)
689  yLinSpace = np.linspace(cellSizeY//2, bbox.getHeight() - cellSizeY//2, nGridY)
690 
691  elif adjustGridOption == 'size':
692  cellSizeX = gridStepX
693  cellSizeY = gridStepY
694  xLinSpace = np.arange(cellSizeX//2, bbox.getWidth() + cellSizeX//2, cellSizeX)
695  yLinSpace = np.arange(cellSizeY//2, bbox.getHeight() + cellSizeY//2, cellSizeY)
696  cellSizeX += 1 # add 1 to make sure there are no gaps
697  cellSizeY += 1
698 
699  else:
700  xLinSpace = np.arange(cellSizeX//2, bbox.getWidth() + cellSizeX//2, gridStepX)
701  yLinSpace = np.arange(cellSizeY//2, bbox.getHeight() + cellSizeY//2, gridStepY)
702 
703  cellCentroids = [(x, y) for x in xLinSpace for y in yLinSpace]
704 
705  else:
706  # in py3 zip returns an iterator, but want to test length below, so use this instead:
707  cellCentroids = [(cellCentroidsX[i], cellCentroidsY[i]) for i in range(len(cellCentroidsX))]
708 
709  # first "main" box at 0,0
710  bbox0 = geom.Box2I(geom.Point2I(bbox.getBegin()), geom.Extent2I(cellSizeX, cellSizeY))
711  # first expanded box
712  bbox1 = geom.Box2I(bbox0)
713  bbox1.grow(geom.Extent2I(borderSizeX, borderSizeY))
714 
715  self.boxes0boxes0 = [] # "main" boxes; store in task so can be extracted if needed
716  self.boxes1boxes1 = [] # "expanded" boxes
717 
718  def _makeBoxEvenSized(bb):
719  """Force a bounding-box to have dimensions that are modulo 2."""
720 
721  if bb.getWidth() % 2 == 1: # grow to the right
722  bb.include(geom.Point2I(bb.getMaxX()+1, bb.getMaxY())) # Expand by 1 pixel!
723  bb.clip(bbox)
724  if bb.getWidth() % 2 == 1: # clipped at right -- so grow to the left
725  bb.include(geom.Point2I(bb.getMinX()-1, bb.getMaxY()))
726  bb.clip(bbox)
727  if bb.getHeight() % 2 == 1: # grow upwards
728  bb.include(geom.Point2I(bb.getMaxX(), bb.getMaxY()+1)) # Expand by 1 pixel!
729  bb.clip(bbox)
730  if bb.getHeight() % 2 == 1: # clipped upwards -- so grow down
731  bb.include(geom.Point2I(bb.getMaxX(), bb.getMinY()-1))
732  bb.clip(bbox)
733  if bb.getWidth() % 2 == 1 or bb.getHeight() % 2 == 1: # Box is probably too big
734  raise RuntimeError('Cannot make bounding box even-sized. Probably too big.')
735 
736  return bb
737 
738  # Use given or grid-parameterized centroids as centers for bounding boxes
739  if cellCentroids is not None and len(cellCentroids) > 0:
740  for x, y in cellCentroids:
741  centroid = geom.Point2D(x, y)
742  bb0 = geom.Box2I(bbox0)
743  xoff = int(np.floor(centroid.getX())) - bb0.getWidth()//2
744  yoff = int(np.floor(centroid.getY())) - bb0.getHeight()//2
745  bb0.shift(geom.Extent2I(xoff, yoff))
746  bb0.clip(bbox)
747  if forceEvenSized:
748  bb0 = _makeBoxEvenSized(bb0)
749  bb1 = geom.Box2I(bbox1)
750  bb1.shift(geom.Extent2I(xoff, yoff))
751  bb1.clip(bbox)
752  if forceEvenSized:
753  bb1 = _makeBoxEvenSized(bb1)
754 
755  if bb0.getArea() > 1 and bb1.getArea() > 1:
756  self.boxes0boxes0.append(bb0)
757  self.boxes1boxes1.append(bb1)
758 
759  return self.boxes0boxes0, self.boxes1boxes1
760 
761  def plotBoxes(self, fullBBox, skip=3):
762  """Plot both grids of boxes using matplotlib.
763 
764  Will compute the grid via `_generateGrid` if
765  `self.boxes0` and `self.boxes1` have not already been set.
766 
767  Parameters
768  ----------
769  exposure : `lsst.afw.image.Exposure`
770  Exposure whose bounding box is gridded by this task.
771  skip : `int`
772  Plot every skip-ped box (help make plots less confusing)
773  """
774  import matplotlib.pyplot as plt
775 
776  if self.boxes0boxes0 is None:
777  raise RuntimeError('Cannot plot boxes. Run _generateGrid first.')
778  self._plotBoxGrid_plotBoxGrid(self.boxes0boxes0[::skip], fullBBox, ls='--')
779  # reset the color cycle -- see
780  # http://stackoverflow.com/questions/24193174/reset-color-cycle-in-matplotlib
781  plt.gca().set_prop_cycle(None)
782  self._plotBoxGrid_plotBoxGrid(self.boxes1boxes1[::skip], fullBBox, ls=':')
783 
784  def _plotBoxGrid(self, boxes, bbox, **kwargs):
785  """Plot a grid of boxes using matplotlib.
786 
787  Parameters
788  ----------
789  boxes : `list` of `lsst.geom.Box2I`
790  a list of bounding boxes.
791  bbox : `lsst.geom.Box2I`
792  an overall bounding box
793  **kwargs
794  additional keyword arguments for matplotlib
795  """
796  import matplotlib.pyplot as plt
797 
798  def plotBox(box):
799  corners = np.array([np.array([pt.getX(), pt.getY()]) for pt in box.getCorners()])
800  corners = np.vstack([corners, corners[0, :]])
801  plt.plot(corners[:, 0], corners[:, 1], **kwargs)
802 
803  for b in boxes:
804  plotBox(b)
805  plt.xlim(bbox.getBeginX(), bbox.getEndX())
806  plt.ylim(bbox.getBeginY(), bbox.getEndY())
table::Key< int > type
Definition: Detector.cc:163
Custom catalog class for ExposureRecord/Table.
Definition: Exposure.h:311
An integer coordinate rectangle.
Definition: Box.h:55
def _runMapper(self, exposure, doClone=False, **kwargs)
def _generateGrid(self, exposure, forceEvenSized=False, **kwargs)
def _reduceImage(self, mapperResults, exposure, **kwargs)
def _plotBoxGrid(self, boxes, bbox, **kwargs)
def run(self, subExposure, expandedSubExposure, fullBBox, **kwargs)
def _constructPsf(self, mapperResults, exposure)
def run(self, mapperResults, exposure, **kwargs)
std::shared_ptr< FrameSet > append(FrameSet const &first, FrameSet const &second)
Construct a FrameSet that performs two transformations in series.
Definition: functional.cc:33
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
Fit spatial kernel using approximate fluxes for candidates, and solving a linear system of equations.