30 import lsst.pipe.base.connectionTypes
as cT
32 from contextlib
import contextmanager
33 from lsstDebug
import getDebugFrame
43 from .
import isrFunctions
45 from .
import linearize
46 from .defects
import Defects
48 from .assembleCcdTask
import AssembleCcdTask
49 from .crosstalk
import CrosstalkTask, CrosstalkCalib
50 from .fringe
import FringeTask
51 from .isr
import maskNans
52 from .masking
import MaskingTask
53 from .overscan
import OverscanCorrectionTask
54 from .straylight
import StrayLightTask
55 from .vignette
import VignetteTask
56 from .ampOffset
import AmpOffsetTask
57 from lsst.daf.butler
import DimensionGraph
60 __all__ = [
"IsrTask",
"IsrTaskConfig",
"RunIsrTask",
"RunIsrConfig"]
64 """Lookup function to identify crosstalkSource entries.
66 This should return an empty list under most circumstances. Only
67 when inter-chip crosstalk has been identified should this be
74 registry : `lsst.daf.butler.Registry`
75 Butler registry to query.
76 quantumDataId : `lsst.daf.butler.ExpandedDataCoordinate`
77 Data id to transform to identify crosstalkSources. The
78 ``detector`` entry will be stripped.
79 collections : `lsst.daf.butler.CollectionSearch`
80 Collections to search through.
84 results : `list` [`lsst.daf.butler.DatasetRef`]
85 List of datasets that match the query that will be used as
88 newDataId = quantumDataId.subset(DimensionGraph(registry.dimensions, names=[
"instrument",
"exposure"]))
89 results =
set(registry.queryDatasets(datasetType, collections=collections, dataId=newDataId,
96 return [ref.expanded(registry.expandDataId(ref.dataId, records=newDataId.records))
for ref
in results]
100 dimensions={
"instrument",
"exposure",
"detector"},
101 defaultTemplates={}):
102 ccdExposure = cT.Input(
104 doc=
"Input exposure to process.",
105 storageClass=
"Exposure",
106 dimensions=[
"instrument",
"exposure",
"detector"],
108 camera = cT.PrerequisiteInput(
110 storageClass=
"Camera",
111 doc=
"Input camera to construct complete exposures.",
112 dimensions=[
"instrument"],
116 crosstalk = cT.PrerequisiteInput(
118 doc=
"Input crosstalk object",
119 storageClass=
"CrosstalkCalib",
120 dimensions=[
"instrument",
"detector"],
124 crosstalkSources = cT.PrerequisiteInput(
125 name=
"isrOverscanCorrected",
126 doc=
"Overscan corrected input images.",
127 storageClass=
"Exposure",
128 dimensions=[
"instrument",
"exposure",
"detector"],
131 lookupFunction=crosstalkSourceLookup,
134 bias = cT.PrerequisiteInput(
136 doc=
"Input bias calibration.",
137 storageClass=
"ExposureF",
138 dimensions=[
"instrument",
"detector"],
141 dark = cT.PrerequisiteInput(
143 doc=
"Input dark calibration.",
144 storageClass=
"ExposureF",
145 dimensions=[
"instrument",
"detector"],
148 flat = cT.PrerequisiteInput(
150 doc=
"Input flat calibration.",
151 storageClass=
"ExposureF",
152 dimensions=[
"instrument",
"physical_filter",
"detector"],
155 ptc = cT.PrerequisiteInput(
157 doc=
"Input Photon Transfer Curve dataset",
158 storageClass=
"PhotonTransferCurveDataset",
159 dimensions=[
"instrument",
"detector"],
162 fringes = cT.PrerequisiteInput(
164 doc=
"Input fringe calibration.",
165 storageClass=
"ExposureF",
166 dimensions=[
"instrument",
"physical_filter",
"detector"],
170 strayLightData = cT.PrerequisiteInput(
172 doc=
"Input stray light calibration.",
173 storageClass=
"StrayLightData",
174 dimensions=[
"instrument",
"physical_filter",
"detector"],
179 bfKernel = cT.PrerequisiteInput(
181 doc=
"Input brighter-fatter kernel.",
182 storageClass=
"NumpyArray",
183 dimensions=[
"instrument"],
187 newBFKernel = cT.PrerequisiteInput(
188 name=
'brighterFatterKernel',
189 doc=
"Newer complete kernel + gain solutions.",
190 storageClass=
"BrighterFatterKernel",
191 dimensions=[
"instrument",
"detector"],
195 defects = cT.PrerequisiteInput(
197 doc=
"Input defect tables.",
198 storageClass=
"Defects",
199 dimensions=[
"instrument",
"detector"],
202 linearizer = cT.PrerequisiteInput(
204 storageClass=
"Linearizer",
205 doc=
"Linearity correction calibration.",
206 dimensions=[
"instrument",
"detector"],
210 opticsTransmission = cT.PrerequisiteInput(
211 name=
"transmission_optics",
212 storageClass=
"TransmissionCurve",
213 doc=
"Transmission curve due to the optics.",
214 dimensions=[
"instrument"],
217 filterTransmission = cT.PrerequisiteInput(
218 name=
"transmission_filter",
219 storageClass=
"TransmissionCurve",
220 doc=
"Transmission curve due to the filter.",
221 dimensions=[
"instrument",
"physical_filter"],
224 sensorTransmission = cT.PrerequisiteInput(
225 name=
"transmission_sensor",
226 storageClass=
"TransmissionCurve",
227 doc=
"Transmission curve due to the sensor.",
228 dimensions=[
"instrument",
"detector"],
231 atmosphereTransmission = cT.PrerequisiteInput(
232 name=
"transmission_atmosphere",
233 storageClass=
"TransmissionCurve",
234 doc=
"Transmission curve due to the atmosphere.",
235 dimensions=[
"instrument"],
238 illumMaskedImage = cT.PrerequisiteInput(
240 doc=
"Input illumination correction.",
241 storageClass=
"MaskedImageF",
242 dimensions=[
"instrument",
"physical_filter",
"detector"],
246 outputExposure = cT.Output(
248 doc=
"Output ISR processed exposure.",
249 storageClass=
"Exposure",
250 dimensions=[
"instrument",
"exposure",
"detector"],
252 preInterpExposure = cT.Output(
253 name=
'preInterpISRCCD',
254 doc=
"Output ISR processed exposure, with pixels left uninterpolated.",
255 storageClass=
"ExposureF",
256 dimensions=[
"instrument",
"exposure",
"detector"],
258 outputOssThumbnail = cT.Output(
260 doc=
"Output Overscan-subtracted thumbnail image.",
261 storageClass=
"Thumbnail",
262 dimensions=[
"instrument",
"exposure",
"detector"],
264 outputFlattenedThumbnail = cT.Output(
265 name=
"FlattenedThumb",
266 doc=
"Output flat-corrected thumbnail image.",
267 storageClass=
"Thumbnail",
268 dimensions=[
"instrument",
"exposure",
"detector"],
274 if config.doBias
is not True:
275 self.prerequisiteInputs.discard(
"bias")
276 if config.doLinearize
is not True:
277 self.prerequisiteInputs.discard(
"linearizer")
278 if config.doCrosstalk
is not True:
279 self.prerequisiteInputs.discard(
"crosstalkSources")
280 self.prerequisiteInputs.discard(
"crosstalk")
281 if config.doBrighterFatter
is not True:
282 self.prerequisiteInputs.discard(
"bfKernel")
283 self.prerequisiteInputs.discard(
"newBFKernel")
284 if config.doDefect
is not True:
285 self.prerequisiteInputs.discard(
"defects")
286 if config.doDark
is not True:
287 self.prerequisiteInputs.discard(
"dark")
288 if config.doFlat
is not True:
289 self.prerequisiteInputs.discard(
"flat")
290 if config.doFringe
is not True:
291 self.prerequisiteInputs.discard(
"fringe")
292 if config.doStrayLight
is not True:
293 self.prerequisiteInputs.discard(
"strayLightData")
294 if config.usePtcGains
is not True and config.usePtcReadNoise
is not True:
295 self.prerequisiteInputs.discard(
"ptc")
296 if config.doAttachTransmissionCurve
is not True:
297 self.prerequisiteInputs.discard(
"opticsTransmission")
298 self.prerequisiteInputs.discard(
"filterTransmission")
299 self.prerequisiteInputs.discard(
"sensorTransmission")
300 self.prerequisiteInputs.discard(
"atmosphereTransmission")
301 if config.doUseOpticsTransmission
is not True:
302 self.prerequisiteInputs.discard(
"opticsTransmission")
303 if config.doUseFilterTransmission
is not True:
304 self.prerequisiteInputs.discard(
"filterTransmission")
305 if config.doUseSensorTransmission
is not True:
306 self.prerequisiteInputs.discard(
"sensorTransmission")
307 if config.doUseAtmosphereTransmission
is not True:
308 self.prerequisiteInputs.discard(
"atmosphereTransmission")
309 if config.doIlluminationCorrection
is not True:
310 self.prerequisiteInputs.discard(
"illumMaskedImage")
312 if config.doWrite
is not True:
313 self.outputs.discard(
"outputExposure")
314 self.outputs.discard(
"preInterpExposure")
315 self.outputs.discard(
"outputFlattenedThumbnail")
316 self.outputs.discard(
"outputOssThumbnail")
317 if config.doSaveInterpPixels
is not True:
318 self.outputs.discard(
"preInterpExposure")
319 if config.qa.doThumbnailOss
is not True:
320 self.outputs.discard(
"outputOssThumbnail")
321 if config.qa.doThumbnailFlattened
is not True:
322 self.outputs.discard(
"outputFlattenedThumbnail")
326 pipelineConnections=IsrTaskConnections):
327 """Configuration parameters for IsrTask.
329 Items are grouped in the order in which they are executed by the task.
331 datasetType = pexConfig.Field(
333 doc=
"Dataset type for input data; users will typically leave this alone, "
334 "but camera-specific ISR tasks will override it",
338 fallbackFilterName = pexConfig.Field(
340 doc=
"Fallback default filter name for calibrations.",
343 useFallbackDate = pexConfig.Field(
345 doc=
"Pass observation date when using fallback filter.",
348 expectWcs = pexConfig.Field(
351 doc=
"Expect input science images to have a WCS (set False for e.g. spectrographs)."
353 fwhm = pexConfig.Field(
355 doc=
"FWHM of PSF in arcseconds.",
358 qa = pexConfig.ConfigField(
360 doc=
"QA related configuration options.",
364 doConvertIntToFloat = pexConfig.Field(
366 doc=
"Convert integer raw images to floating point values?",
371 doSaturation = pexConfig.Field(
373 doc=
"Mask saturated pixels? NB: this is totally independent of the"
374 " interpolation option - this is ONLY setting the bits in the mask."
375 " To have them interpolated make sure doSaturationInterpolation=True",
378 saturatedMaskName = pexConfig.Field(
380 doc=
"Name of mask plane to use in saturation detection and interpolation",
383 saturation = pexConfig.Field(
385 doc=
"The saturation level to use if no Detector is present in the Exposure (ignored if NaN)",
386 default=float(
"NaN"),
388 growSaturationFootprintSize = pexConfig.Field(
390 doc=
"Number of pixels by which to grow the saturation footprints",
395 doSuspect = pexConfig.Field(
397 doc=
"Mask suspect pixels?",
400 suspectMaskName = pexConfig.Field(
402 doc=
"Name of mask plane to use for suspect pixels",
405 numEdgeSuspect = pexConfig.Field(
407 doc=
"Number of edge pixels to be flagged as untrustworthy.",
410 edgeMaskLevel = pexConfig.ChoiceField(
412 doc=
"Mask edge pixels in which coordinate frame: DETECTOR or AMP?",
415 'DETECTOR':
'Mask only the edges of the full detector.',
416 'AMP':
'Mask edges of each amplifier.',
421 doSetBadRegions = pexConfig.Field(
423 doc=
"Should we set the level of all BAD patches of the chip to the chip's average value?",
426 badStatistic = pexConfig.ChoiceField(
428 doc=
"How to estimate the average value for BAD regions.",
431 "MEANCLIP":
"Correct using the (clipped) mean of good data",
432 "MEDIAN":
"Correct using the median of the good data",
437 doOverscan = pexConfig.Field(
439 doc=
"Do overscan subtraction?",
442 overscan = pexConfig.ConfigurableField(
443 target=OverscanCorrectionTask,
444 doc=
"Overscan subtraction task for image segments.",
446 overscanFitType = pexConfig.ChoiceField(
448 doc=
"The method for fitting the overscan bias level.",
451 "POLY":
"Fit ordinary polynomial to the longest axis of the overscan region",
452 "CHEB":
"Fit Chebyshev polynomial to the longest axis of the overscan region",
453 "LEG":
"Fit Legendre polynomial to the longest axis of the overscan region",
454 "NATURAL_SPLINE":
"Fit natural spline to the longest axis of the overscan region",
455 "CUBIC_SPLINE":
"Fit cubic spline to the longest axis of the overscan region",
456 "AKIMA_SPLINE":
"Fit Akima spline to the longest axis of the overscan region",
457 "MEAN":
"Correct using the mean of the overscan region",
458 "MEANCLIP":
"Correct using a clipped mean of the overscan region",
459 "MEDIAN":
"Correct using the median of the overscan region",
460 "MEDIAN_PER_ROW":
"Correct using the median per row of the overscan region",
462 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface."
463 " This option will no longer be used, and will be removed after v20.")
465 overscanOrder = pexConfig.Field(
467 doc=(
"Order of polynomial or to fit if overscan fit type is a polynomial, "
468 "or number of spline knots if overscan fit type is a spline."),
470 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface."
471 " This option will no longer be used, and will be removed after v20.")
473 overscanNumSigmaClip = pexConfig.Field(
475 doc=
"Rejection threshold (sigma) for collapsing overscan before fit",
477 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface."
478 " This option will no longer be used, and will be removed after v20.")
480 overscanIsInt = pexConfig.Field(
482 doc=
"Treat overscan as an integer image for purposes of overscan.FitType=MEDIAN"
483 " and overscan.FitType=MEDIAN_PER_ROW.",
485 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface."
486 " This option will no longer be used, and will be removed after v20.")
490 overscanNumLeadingColumnsToSkip = pexConfig.Field(
492 doc=
"Number of columns to skip in overscan, i.e. those closest to amplifier",
495 overscanNumTrailingColumnsToSkip = pexConfig.Field(
497 doc=
"Number of columns to skip in overscan, i.e. those farthest from amplifier",
500 overscanMaxDev = pexConfig.Field(
502 doc=
"Maximum deviation from the median for overscan",
503 default=1000.0, check=
lambda x: x > 0
505 overscanBiasJump = pexConfig.Field(
507 doc=
"Fit the overscan in a piecewise-fashion to correct for bias jumps?",
510 overscanBiasJumpKeyword = pexConfig.Field(
512 doc=
"Header keyword containing information about devices.",
513 default=
"NO_SUCH_KEY",
515 overscanBiasJumpDevices = pexConfig.ListField(
517 doc=
"List of devices that need piecewise overscan correction.",
520 overscanBiasJumpLocation = pexConfig.Field(
522 doc=
"Location of bias jump along y-axis.",
527 doAssembleCcd = pexConfig.Field(
530 doc=
"Assemble amp-level exposures into a ccd-level exposure?"
532 assembleCcd = pexConfig.ConfigurableField(
533 target=AssembleCcdTask,
534 doc=
"CCD assembly task",
538 doAssembleIsrExposures = pexConfig.Field(
541 doc=
"Assemble amp-level calibration exposures into ccd-level exposure?"
543 doTrimToMatchCalib = pexConfig.Field(
546 doc=
"Trim raw data to match calibration bounding boxes?"
550 doBias = pexConfig.Field(
552 doc=
"Apply bias frame correction?",
555 biasDataProductName = pexConfig.Field(
557 doc=
"Name of the bias data product",
560 doBiasBeforeOverscan = pexConfig.Field(
562 doc=
"Reverse order of overscan and bias correction.",
567 doVariance = pexConfig.Field(
569 doc=
"Calculate variance?",
572 gain = pexConfig.Field(
574 doc=
"The gain to use if no Detector is present in the Exposure (ignored if NaN)",
575 default=float(
"NaN"),
577 readNoise = pexConfig.Field(
579 doc=
"The read noise to use if no Detector is present in the Exposure",
582 doEmpiricalReadNoise = pexConfig.Field(
585 doc=
"Calculate empirical read noise instead of value from AmpInfo data?"
587 usePtcReadNoise = pexConfig.Field(
590 doc=
"Use readnoise values from the Photon Transfer Curve?"
592 maskNegativeVariance = pexConfig.Field(
595 doc=
"Mask pixels that claim a negative variance? This likely indicates a failure "
596 "in the measurement of the overscan at an edge due to the data falling off faster "
597 "than the overscan model can account for it."
599 negativeVarianceMaskName = pexConfig.Field(
602 doc=
"Mask plane to use to mark pixels with negative variance, if `maskNegativeVariance` is True.",
605 doLinearize = pexConfig.Field(
607 doc=
"Correct for nonlinearity of the detector's response?",
612 doCrosstalk = pexConfig.Field(
614 doc=
"Apply intra-CCD crosstalk correction?",
617 doCrosstalkBeforeAssemble = pexConfig.Field(
619 doc=
"Apply crosstalk correction before CCD assembly, and before trimming?",
622 crosstalk = pexConfig.ConfigurableField(
623 target=CrosstalkTask,
624 doc=
"Intra-CCD crosstalk correction",
628 doDefect = pexConfig.Field(
630 doc=
"Apply correction for CCD defects, e.g. hot pixels?",
633 doNanMasking = pexConfig.Field(
635 doc=
"Mask non-finite (NAN, inf) pixels?",
638 doWidenSaturationTrails = pexConfig.Field(
640 doc=
"Widen bleed trails based on their width?",
645 doBrighterFatter = pexConfig.Field(
648 doc=
"Apply the brighter-fatter correction?"
650 brighterFatterLevel = pexConfig.ChoiceField(
653 doc=
"The level at which to correct for brighter-fatter.",
655 "AMP":
"Every amplifier treated separately.",
656 "DETECTOR":
"One kernel per detector",
659 brighterFatterMaxIter = pexConfig.Field(
662 doc=
"Maximum number of iterations for the brighter-fatter correction"
664 brighterFatterThreshold = pexConfig.Field(
667 doc=
"Threshold used to stop iterating the brighter-fatter correction. It is the "
668 "absolute value of the difference between the current corrected image and the one "
669 "from the previous iteration summed over all the pixels."
671 brighterFatterApplyGain = pexConfig.Field(
674 doc=
"Should the gain be applied when applying the brighter-fatter correction?"
676 brighterFatterMaskListToInterpolate = pexConfig.ListField(
678 doc=
"List of mask planes that should be interpolated over when applying the brighter-fatter "
680 default=[
"SAT",
"BAD",
"NO_DATA",
"UNMASKEDNAN"],
682 brighterFatterMaskGrowSize = pexConfig.Field(
685 doc=
"Number of pixels to grow the masks listed in config.brighterFatterMaskListToInterpolate "
686 "when brighter-fatter correction is applied."
690 doDark = pexConfig.Field(
692 doc=
"Apply dark frame correction?",
695 darkDataProductName = pexConfig.Field(
697 doc=
"Name of the dark data product",
702 doStrayLight = pexConfig.Field(
704 doc=
"Subtract stray light in the y-band (due to encoder LEDs)?",
707 strayLight = pexConfig.ConfigurableField(
708 target=StrayLightTask,
709 doc=
"y-band stray light correction"
713 doFlat = pexConfig.Field(
715 doc=
"Apply flat field correction?",
718 flatDataProductName = pexConfig.Field(
720 doc=
"Name of the flat data product",
723 flatScalingType = pexConfig.ChoiceField(
725 doc=
"The method for scaling the flat on the fly.",
728 "USER":
"Scale by flatUserScale",
729 "MEAN":
"Scale by the inverse of the mean",
730 "MEDIAN":
"Scale by the inverse of the median",
733 flatUserScale = pexConfig.Field(
735 doc=
"If flatScalingType is 'USER' then scale flat by this amount; ignored otherwise",
738 doTweakFlat = pexConfig.Field(
740 doc=
"Tweak flats to match observed amplifier ratios?",
746 doApplyGains = pexConfig.Field(
748 doc=
"Correct the amplifiers for their gains instead of applying flat correction",
751 usePtcGains = pexConfig.Field(
753 doc=
"Use the gain values from the Photon Transfer Curve?",
756 normalizeGains = pexConfig.Field(
758 doc=
"Normalize all the amplifiers in each CCD to have the same median value.",
763 doFringe = pexConfig.Field(
765 doc=
"Apply fringe correction?",
768 fringe = pexConfig.ConfigurableField(
770 doc=
"Fringe subtraction task",
772 fringeAfterFlat = pexConfig.Field(
774 doc=
"Do fringe subtraction after flat-fielding?",
779 doAmpOffset = pexConfig.Field(
780 doc=
"Calculate and apply amp offset corrections?",
784 ampOffset = pexConfig.ConfigurableField(
785 doc=
"Amp offset correction task.",
786 target=AmpOffsetTask,
790 doMeasureBackground = pexConfig.Field(
792 doc=
"Measure the background level on the reduced image?",
797 doCameraSpecificMasking = pexConfig.Field(
799 doc=
"Mask camera-specific bad regions?",
802 masking = pexConfig.ConfigurableField(
808 doInterpolate = pexConfig.Field(
810 doc=
"Interpolate masked pixels?",
813 doSaturationInterpolation = pexConfig.Field(
815 doc=
"Perform interpolation over pixels masked as saturated?"
816 " NB: This is independent of doSaturation; if that is False this plane"
817 " will likely be blank, resulting in a no-op here.",
820 doNanInterpolation = pexConfig.Field(
822 doc=
"Perform interpolation over pixels masked as NaN?"
823 " NB: This is independent of doNanMasking; if that is False this plane"
824 " will likely be blank, resulting in a no-op here.",
827 doNanInterpAfterFlat = pexConfig.Field(
829 doc=(
"If True, ensure we interpolate NaNs after flat-fielding, even if we "
830 "also have to interpolate them before flat-fielding."),
833 maskListToInterpolate = pexConfig.ListField(
835 doc=
"List of mask planes that should be interpolated.",
836 default=[
'SAT',
'BAD'],
838 doSaveInterpPixels = pexConfig.Field(
840 doc=
"Save a copy of the pre-interpolated pixel values?",
845 fluxMag0T1 = pexConfig.DictField(
848 doc=
"The approximate flux of a zero-magnitude object in a one-second exposure, per filter.",
849 default=dict((f, pow(10.0, 0.4*m))
for f, m
in ((
"Unknown", 28.0),
852 defaultFluxMag0T1 = pexConfig.Field(
854 doc=
"Default value for fluxMag0T1 (for an unrecognized filter).",
855 default=pow(10.0, 0.4*28.0)
859 doVignette = pexConfig.Field(
861 doc=
"Apply vignetting parameters?",
864 vignette = pexConfig.ConfigurableField(
866 doc=
"Vignetting task.",
870 doAttachTransmissionCurve = pexConfig.Field(
873 doc=
"Construct and attach a wavelength-dependent throughput curve for this CCD image?"
875 doUseOpticsTransmission = pexConfig.Field(
878 doc=
"Load and use transmission_optics (if doAttachTransmissionCurve is True)?"
880 doUseFilterTransmission = pexConfig.Field(
883 doc=
"Load and use transmission_filter (if doAttachTransmissionCurve is True)?"
885 doUseSensorTransmission = pexConfig.Field(
888 doc=
"Load and use transmission_sensor (if doAttachTransmissionCurve is True)?"
890 doUseAtmosphereTransmission = pexConfig.Field(
893 doc=
"Load and use transmission_atmosphere (if doAttachTransmissionCurve is True)?"
897 doIlluminationCorrection = pexConfig.Field(
900 doc=
"Perform illumination correction?"
902 illuminationCorrectionDataProductName = pexConfig.Field(
904 doc=
"Name of the illumination correction data product.",
907 illumScale = pexConfig.Field(
909 doc=
"Scale factor for the illumination correction.",
912 illumFilters = pexConfig.ListField(
915 doc=
"Only perform illumination correction for these filters."
920 doWrite = pexConfig.Field(
922 doc=
"Persist postISRCCD?",
929 raise ValueError(
"You may not specify both doFlat and doApplyGains")
931 raise ValueError(
"You may not specify both doBiasBeforeOverscan and doTrimToMatchCalib")
940 class IsrTask(pipeBase.PipelineTask, pipeBase.CmdLineTask):
941 """Apply common instrument signature correction algorithms to a raw frame.
943 The process for correcting imaging data is very similar from
944 camera to camera. This task provides a vanilla implementation of
945 doing these corrections, including the ability to turn certain
946 corrections off if they are not needed. The inputs to the primary
947 method, `run()`, are a raw exposure to be corrected and the
948 calibration data products. The raw input is a single chip sized
949 mosaic of all amps including overscans and other non-science
950 pixels. The method `runDataRef()` identifies and defines the
951 calibration data products, and is intended for use by a
952 `lsst.pipe.base.cmdLineTask.CmdLineTask` and takes as input only a
953 `daf.persistence.butlerSubset.ButlerDataRef`. This task may be
954 subclassed for different camera, although the most camera specific
955 methods have been split into subtasks that can be redirected
958 The __init__ method sets up the subtasks for ISR processing, using
959 the defaults from `lsst.ip.isr`.
964 Positional arguments passed to the Task constructor.
965 None used at this time.
966 kwargs : `dict`, optional
967 Keyword arguments passed on to the Task constructor.
968 None used at this time.
970 ConfigClass = IsrTaskConfig
975 self.makeSubtask(
"assembleCcd")
976 self.makeSubtask(
"crosstalk")
977 self.makeSubtask(
"strayLight")
978 self.makeSubtask(
"fringe")
979 self.makeSubtask(
"masking")
980 self.makeSubtask(
"overscan")
981 self.makeSubtask(
"vignette")
982 self.makeSubtask(
"ampOffset")
985 inputs = butlerQC.get(inputRefs)
988 inputs[
'detectorNum'] = inputRefs.ccdExposure.dataId[
'detector']
989 except Exception
as e:
990 raise ValueError(
"Failure to find valid detectorNum value for Dataset %s: %s." %
993 inputs[
'isGen3'] =
True
995 detector = inputs[
'ccdExposure'].getDetector()
997 if self.config.doCrosstalk
is True:
1000 if 'crosstalk' in inputs
and inputs[
'crosstalk']
is not None:
1001 if not isinstance(inputs[
'crosstalk'], CrosstalkCalib):
1002 inputs[
'crosstalk'] = CrosstalkCalib.fromTable(inputs[
'crosstalk'])
1004 coeffVector = (self.config.crosstalk.crosstalkValues
1005 if self.config.crosstalk.useConfigCoefficients
else None)
1006 crosstalkCalib =
CrosstalkCalib().fromDetector(detector, coeffVector=coeffVector)
1007 inputs[
'crosstalk'] = crosstalkCalib
1008 if inputs[
'crosstalk'].interChip
and len(inputs[
'crosstalk'].interChip) > 0:
1009 if 'crosstalkSources' not in inputs:
1010 self.log.
warning(
"No crosstalkSources found for chip with interChip terms!")
1013 if 'linearizer' in inputs:
1014 if isinstance(inputs[
'linearizer'], dict):
1016 linearizer.fromYaml(inputs[
'linearizer'])
1017 self.log.
warning(
"Dictionary linearizers will be deprecated in DM-28741.")
1018 elif isinstance(inputs[
'linearizer'], numpy.ndarray):
1022 self.log.
warning(
"Bare lookup table linearizers will be deprecated in DM-28741.")
1024 linearizer = inputs[
'linearizer']
1025 linearizer.log = self.log
1026 inputs[
'linearizer'] = linearizer
1029 self.log.
warning(
"Constructing linearizer from cameraGeom information.")
1031 if self.config.doDefect
is True:
1032 if "defects" in inputs
and inputs[
'defects']
is not None:
1036 if not isinstance(inputs[
"defects"], Defects):
1037 inputs[
"defects"] = Defects.fromTable(inputs[
"defects"])
1041 if self.config.doBrighterFatter:
1042 brighterFatterKernel = inputs.pop(
'newBFKernel',
None)
1043 if brighterFatterKernel
is None:
1044 brighterFatterKernel = inputs.get(
'bfKernel',
None)
1046 if brighterFatterKernel
is not None and not isinstance(brighterFatterKernel, numpy.ndarray):
1048 detName = detector.getName()
1049 level = brighterFatterKernel.level
1052 inputs[
'bfGains'] = brighterFatterKernel.gain
1053 if self.config.brighterFatterLevel ==
'DETECTOR':
1054 if level ==
'DETECTOR':
1055 if detName
in brighterFatterKernel.detKernels:
1056 inputs[
'bfKernel'] = brighterFatterKernel.detKernels[detName]
1058 raise RuntimeError(
"Failed to extract kernel from new-style BF kernel.")
1059 elif level ==
'AMP':
1060 self.log.
warning(
"Making DETECTOR level kernel from AMP based brighter "
1062 brighterFatterKernel.makeDetectorKernelFromAmpwiseKernels(detName)
1063 inputs[
'bfKernel'] = brighterFatterKernel.detKernels[detName]
1064 elif self.config.brighterFatterLevel ==
'AMP':
1065 raise NotImplementedError(
"Per-amplifier brighter-fatter correction not implemented")
1067 if self.config.doFringe
is True and self.fringe.
checkFilter(inputs[
'ccdExposure']):
1069 inputs[
'fringes'] = self.fringe.loadFringes(inputs[
'fringes'],
1071 assembler=self.assembleCcd
1072 if self.config.doAssembleIsrExposures
else None)
1074 inputs[
'fringes'] = pipeBase.Struct(fringes=
None)
1076 if self.config.doStrayLight
is True and self.strayLight.
checkFilter(inputs[
'ccdExposure']):
1077 if 'strayLightData' not in inputs:
1078 inputs[
'strayLightData'] =
None
1080 outputs = self.
runrun(**inputs)
1081 butlerQC.put(outputs, outputRefs)
1084 """Retrieve necessary frames for instrument signature removal.
1086 Pre-fetching all required ISR data products limits the IO
1087 required by the ISR. Any conflict between the calibration data
1088 available and that needed for ISR is also detected prior to
1089 doing processing, allowing it to fail quickly.
1093 dataRef : `daf.persistence.butlerSubset.ButlerDataRef`
1094 Butler reference of the detector data to be processed
1095 rawExposure : `afw.image.Exposure`
1096 The raw exposure that will later be corrected with the
1097 retrieved calibration data; should not be modified in this
1102 result : `lsst.pipe.base.Struct`
1103 Result struct with components (which may be `None`):
1104 - ``bias``: bias calibration frame (`afw.image.Exposure`)
1105 - ``linearizer``: functor for linearization
1106 (`ip.isr.linearize.LinearizeBase`)
1107 - ``crosstalkSources``: list of possible crosstalk sources (`list`)
1108 - ``dark``: dark calibration frame (`afw.image.Exposure`)
1109 - ``flat``: flat calibration frame (`afw.image.Exposure`)
1110 - ``bfKernel``: Brighter-Fatter kernel (`numpy.ndarray`)
1111 - ``defects``: list of defects (`lsst.ip.isr.Defects`)
1112 - ``fringes``: `lsst.pipe.base.Struct` with components:
1113 - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
1114 - ``seed``: random seed derived from the ccdExposureId for random
1115 number generator (`uint32`).
1116 - ``opticsTransmission``: `lsst.afw.image.TransmissionCurve`
1117 A ``TransmissionCurve`` that represents the throughput of the
1118 optics, to be evaluated in focal-plane coordinates.
1119 - ``filterTransmission`` : `lsst.afw.image.TransmissionCurve`
1120 A ``TransmissionCurve`` that represents the throughput of the
1121 filter itself, to be evaluated in focal-plane coordinates.
1122 - ``sensorTransmission`` : `lsst.afw.image.TransmissionCurve`
1123 A ``TransmissionCurve`` that represents the throughput of the
1124 sensor itself, to be evaluated in post-assembly trimmed
1125 detector coordinates.
1126 - ``atmosphereTransmission`` : `lsst.afw.image.TransmissionCurve`
1127 A ``TransmissionCurve`` that represents the throughput of the
1128 atmosphere, assumed to be spatially constant.
1129 - ``strayLightData`` : `object`
1130 An opaque object containing calibration information for
1131 stray-light correction. If `None`, no correction will be
1133 - ``illumMaskedImage`` : illumination correction image
1134 (`lsst.afw.image.MaskedImage`)
1138 NotImplementedError :
1139 Raised if a per-amplifier brighter-fatter kernel is requested by
1143 dateObs = rawExposure.getInfo().getVisitInfo().getDate()
1144 dateObs = dateObs.toPython().isoformat()
1145 except RuntimeError:
1146 self.log.
warning(
"Unable to identify dateObs for rawExposure.")
1149 ccd = rawExposure.getDetector()
1150 filterLabel = rawExposure.getFilterLabel()
1151 physicalFilter = isrFunctions.getPhysicalFilter(filterLabel, self.log)
1152 rawExposure.mask.addMaskPlane(
"UNMASKEDNAN")
1153 biasExposure = (self.
getIsrExposuregetIsrExposure(dataRef, self.config.biasDataProductName)
1154 if self.config.doBias
else None)
1157 linearizer = (dataRef.get(
"linearizer", immediate=
True)
1159 if linearizer
is not None and not isinstance(linearizer, numpy.ndarray):
1160 linearizer.log = self.log
1161 if isinstance(linearizer, numpy.ndarray):
1164 crosstalkCalib =
None
1165 if self.config.doCrosstalk:
1167 crosstalkCalib = dataRef.get(
"crosstalk", immediate=
True)
1169 coeffVector = (self.config.crosstalk.crosstalkValues
1170 if self.config.crosstalk.useConfigCoefficients
else None)
1171 crosstalkCalib =
CrosstalkCalib().fromDetector(ccd, coeffVector=coeffVector)
1172 crosstalkSources = (self.crosstalk.prepCrosstalk(dataRef, crosstalkCalib)
1173 if self.config.doCrosstalk
else None)
1175 darkExposure = (self.
getIsrExposuregetIsrExposure(dataRef, self.config.darkDataProductName)
1176 if self.config.doDark
else None)
1177 flatExposure = (self.
getIsrExposuregetIsrExposure(dataRef, self.config.flatDataProductName,
1179 if self.config.doFlat
else None)
1181 brighterFatterKernel =
None
1182 brighterFatterGains =
None
1183 if self.config.doBrighterFatter
is True:
1188 brighterFatterKernel = dataRef.get(
"brighterFatterKernel")
1189 brighterFatterGains = brighterFatterKernel.gain
1190 self.log.
info(
"New style brighter-fatter kernel (brighterFatterKernel) loaded")
1193 brighterFatterKernel = dataRef.get(
"bfKernel")
1194 self.log.
info(
"Old style brighter-fatter kernel (bfKernel) loaded")
1196 brighterFatterKernel =
None
1197 if brighterFatterKernel
is not None and not isinstance(brighterFatterKernel, numpy.ndarray):
1200 if self.config.brighterFatterLevel ==
'DETECTOR':
1201 if brighterFatterKernel.detKernels:
1202 brighterFatterKernel = brighterFatterKernel.detKernels[ccd.getName()]
1204 raise RuntimeError(
"Failed to extract kernel from new-style BF kernel.")
1207 raise NotImplementedError(
"Per-amplifier brighter-fatter correction not implemented")
1209 defectList = (dataRef.get(
"defects")
1210 if self.config.doDefect
else None)
1211 expId = rawExposure.getInfo().getVisitInfo().
getExposureId()
1212 fringeStruct = (self.fringe.readFringes(dataRef, expId=expId, assembler=self.assembleCcd
1213 if self.config.doAssembleIsrExposures
else None)
1214 if self.config.doFringe
and self.fringe.
checkFilter(rawExposure)
1215 else pipeBase.Struct(fringes=
None))
1217 if self.config.doAttachTransmissionCurve:
1218 opticsTransmission = (dataRef.get(
"transmission_optics")
1219 if self.config.doUseOpticsTransmission
else None)
1220 filterTransmission = (dataRef.get(
"transmission_filter")
1221 if self.config.doUseFilterTransmission
else None)
1222 sensorTransmission = (dataRef.get(
"transmission_sensor")
1223 if self.config.doUseSensorTransmission
else None)
1224 atmosphereTransmission = (dataRef.get(
"transmission_atmosphere")
1225 if self.config.doUseAtmosphereTransmission
else None)
1227 opticsTransmission =
None
1228 filterTransmission =
None
1229 sensorTransmission =
None
1230 atmosphereTransmission =
None
1232 if self.config.doStrayLight:
1233 strayLightData = self.strayLight.
readIsrData(dataRef, rawExposure)
1235 strayLightData =
None
1238 self.config.illuminationCorrectionDataProductName).getMaskedImage()
1239 if (self.config.doIlluminationCorrection
1240 and physicalFilter
in self.config.illumFilters)
1244 return pipeBase.Struct(bias=biasExposure,
1245 linearizer=linearizer,
1246 crosstalk=crosstalkCalib,
1247 crosstalkSources=crosstalkSources,
1250 bfKernel=brighterFatterKernel,
1251 bfGains=brighterFatterGains,
1253 fringes=fringeStruct,
1254 opticsTransmission=opticsTransmission,
1255 filterTransmission=filterTransmission,
1256 sensorTransmission=sensorTransmission,
1257 atmosphereTransmission=atmosphereTransmission,
1258 strayLightData=strayLightData,
1259 illumMaskedImage=illumMaskedImage
1262 @pipeBase.timeMethod
1263 def run(self, ccdExposure, *, camera=None, bias=None, linearizer=None,
1264 crosstalk=None, crosstalkSources=None,
1265 dark=None, flat=None, ptc=None, bfKernel=None, bfGains=None, defects=None,
1266 fringes=pipeBase.Struct(fringes=
None), opticsTransmission=
None, filterTransmission=
None,
1267 sensorTransmission=
None, atmosphereTransmission=
None,
1268 detectorNum=
None, strayLightData=
None, illumMaskedImage=
None,
1271 """Perform instrument signature removal on an exposure.
1273 Steps included in the ISR processing, in order performed, are:
1274 - saturation and suspect pixel masking
1275 - overscan subtraction
1276 - CCD assembly of individual amplifiers
1278 - variance image construction
1279 - linearization of non-linear response
1281 - brighter-fatter correction
1284 - stray light subtraction
1286 - masking of known defects and camera specific features
1287 - vignette calculation
1288 - appending transmission curve and distortion model
1292 ccdExposure : `lsst.afw.image.Exposure`
1293 The raw exposure that is to be run through ISR. The
1294 exposure is modified by this method.
1295 camera : `lsst.afw.cameraGeom.Camera`, optional
1296 The camera geometry for this exposure. Required if
1297 one or more of ``ccdExposure``, ``bias``, ``dark``, or
1298 ``flat`` does not have an associated detector.
1299 bias : `lsst.afw.image.Exposure`, optional
1300 Bias calibration frame.
1301 linearizer : `lsst.ip.isr.linearize.LinearizeBase`, optional
1302 Functor for linearization.
1303 crosstalk : `lsst.ip.isr.crosstalk.CrosstalkCalib`, optional
1304 Calibration for crosstalk.
1305 crosstalkSources : `list`, optional
1306 List of possible crosstalk sources.
1307 dark : `lsst.afw.image.Exposure`, optional
1308 Dark calibration frame.
1309 flat : `lsst.afw.image.Exposure`, optional
1310 Flat calibration frame.
1311 ptc : `lsst.ip.isr.PhotonTransferCurveDataset`, optional
1312 Photon transfer curve dataset, with, e.g., gains
1314 bfKernel : `numpy.ndarray`, optional
1315 Brighter-fatter kernel.
1316 bfGains : `dict` of `float`, optional
1317 Gains used to override the detector's nominal gains for the
1318 brighter-fatter correction. A dict keyed by amplifier name for
1319 the detector in question.
1320 defects : `lsst.ip.isr.Defects`, optional
1322 fringes : `lsst.pipe.base.Struct`, optional
1323 Struct containing the fringe correction data, with
1325 - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
1326 - ``seed``: random seed derived from the ccdExposureId for random
1327 number generator (`uint32`)
1328 opticsTransmission: `lsst.afw.image.TransmissionCurve`, optional
1329 A ``TransmissionCurve`` that represents the throughput of the,
1330 optics, to be evaluated in focal-plane coordinates.
1331 filterTransmission : `lsst.afw.image.TransmissionCurve`
1332 A ``TransmissionCurve`` that represents the throughput of the
1333 filter itself, to be evaluated in focal-plane coordinates.
1334 sensorTransmission : `lsst.afw.image.TransmissionCurve`
1335 A ``TransmissionCurve`` that represents the throughput of the
1336 sensor itself, to be evaluated in post-assembly trimmed detector
1338 atmosphereTransmission : `lsst.afw.image.TransmissionCurve`
1339 A ``TransmissionCurve`` that represents the throughput of the
1340 atmosphere, assumed to be spatially constant.
1341 detectorNum : `int`, optional
1342 The integer number for the detector to process.
1343 isGen3 : bool, optional
1344 Flag this call to run() as using the Gen3 butler environment.
1345 strayLightData : `object`, optional
1346 Opaque object containing calibration information for stray-light
1347 correction. If `None`, no correction will be performed.
1348 illumMaskedImage : `lsst.afw.image.MaskedImage`, optional
1349 Illumination correction image.
1353 result : `lsst.pipe.base.Struct`
1354 Result struct with component:
1355 - ``exposure`` : `afw.image.Exposure`
1356 The fully ISR corrected exposure.
1357 - ``outputExposure`` : `afw.image.Exposure`
1358 An alias for `exposure`
1359 - ``ossThumb`` : `numpy.ndarray`
1360 Thumbnail image of the exposure after overscan subtraction.
1361 - ``flattenedThumb`` : `numpy.ndarray`
1362 Thumbnail image of the exposure after flat-field correction.
1367 Raised if a configuration option is set to True, but the
1368 required calibration data has not been specified.
1372 The current processed exposure can be viewed by setting the
1373 appropriate lsstDebug entries in the `debug.display`
1374 dictionary. The names of these entries correspond to some of
1375 the IsrTaskConfig Boolean options, with the value denoting the
1376 frame to use. The exposure is shown inside the matching
1377 option check and after the processing of that step has
1378 finished. The steps with debug points are:
1389 In addition, setting the "postISRCCD" entry displays the
1390 exposure after all ISR processing has finished.
1399 ccdExposure = self.
ensureExposureensureExposure(ccdExposure, camera, detectorNum)
1400 bias = self.
ensureExposureensureExposure(bias, camera, detectorNum)
1401 dark = self.
ensureExposureensureExposure(dark, camera, detectorNum)
1402 flat = self.
ensureExposureensureExposure(flat, camera, detectorNum)
1404 if isinstance(ccdExposure, ButlerDataRef):
1405 return self.
runDataRefrunDataRef(ccdExposure)
1407 ccd = ccdExposure.getDetector()
1408 filterLabel = ccdExposure.getFilterLabel()
1409 physicalFilter = isrFunctions.getPhysicalFilter(filterLabel, self.log)
1412 assert not self.config.doAssembleCcd,
"You need a Detector to run assembleCcd."
1413 ccd = [
FakeAmp(ccdExposure, self.config)]
1416 if self.config.doBias
and bias
is None:
1417 raise RuntimeError(
"Must supply a bias exposure if config.doBias=True.")
1418 if self.
doLinearizedoLinearize(ccd)
and linearizer
is None:
1419 raise RuntimeError(
"Must supply a linearizer if config.doLinearize=True for this detector.")
1420 if self.config.doBrighterFatter
and bfKernel
is None:
1421 raise RuntimeError(
"Must supply a kernel if config.doBrighterFatter=True.")
1422 if self.config.doDark
and dark
is None:
1423 raise RuntimeError(
"Must supply a dark exposure if config.doDark=True.")
1424 if self.config.doFlat
and flat
is None:
1425 raise RuntimeError(
"Must supply a flat exposure if config.doFlat=True.")
1426 if self.config.doDefect
and defects
is None:
1427 raise RuntimeError(
"Must supply defects if config.doDefect=True.")
1428 if (self.config.doFringe
and physicalFilter
in self.fringe.config.filters
1429 and fringes.fringes
is None):
1434 raise RuntimeError(
"Must supply fringe exposure as a pipeBase.Struct.")
1435 if (self.config.doIlluminationCorrection
and physicalFilter
in self.config.illumFilters
1436 and illumMaskedImage
is None):
1437 raise RuntimeError(
"Must supply an illumcor if config.doIlluminationCorrection=True.")
1440 if self.config.doConvertIntToFloat:
1441 self.log.
info(
"Converting exposure to floating point values.")
1444 if self.config.doBias
and self.config.doBiasBeforeOverscan:
1445 self.log.
info(
"Applying bias correction.")
1446 isrFunctions.biasCorrection(ccdExposure.getMaskedImage(), bias.getMaskedImage(),
1447 trimToFit=self.config.doTrimToMatchCalib)
1448 self.
debugViewdebugView(ccdExposure,
"doBias")
1455 if ccdExposure.getBBox().
contains(amp.getBBox()):
1458 badAmp = self.
maskAmplifiermaskAmplifier(ccdExposure, amp, defects)
1460 if self.config.doOverscan
and not badAmp:
1463 self.log.
debug(
"Corrected overscan for amplifier %s.", amp.getName())
1464 if overscanResults
is not None and \
1465 self.config.qa
is not None and self.config.qa.saveStats
is True:
1466 if isinstance(overscanResults.overscanFit, float):
1467 qaMedian = overscanResults.overscanFit
1468 qaStdev = float(
"NaN")
1471 afwMath.MEDIAN | afwMath.STDEVCLIP)
1472 qaMedian = qaStats.getValue(afwMath.MEDIAN)
1473 qaStdev = qaStats.getValue(afwMath.STDEVCLIP)
1475 self.metadata.
set(f
"FIT MEDIAN {amp.getName()}", qaMedian)
1476 self.metadata.
set(f
"FIT STDEV {amp.getName()}", qaStdev)
1477 self.log.
debug(
" Overscan stats for amplifer %s: %f +/- %f",
1478 amp.getName(), qaMedian, qaStdev)
1482 afwMath.MEDIAN | afwMath.STDEVCLIP)
1483 qaMedianAfter = qaStatsAfter.getValue(afwMath.MEDIAN)
1484 qaStdevAfter = qaStatsAfter.getValue(afwMath.STDEVCLIP)
1486 self.metadata.
set(f
"RESIDUAL MEDIAN {amp.getName()}", qaMedianAfter)
1487 self.metadata.
set(f
"RESIDUAL STDEV {amp.getName()}", qaStdevAfter)
1488 self.log.
debug(
" Overscan stats for amplifer %s after correction: %f +/- %f",
1489 amp.getName(), qaMedianAfter, qaStdevAfter)
1491 ccdExposure.getMetadata().
set(
'OVERSCAN',
"Overscan corrected")
1494 self.log.
warning(
"Amplifier %s is bad.", amp.getName())
1495 overscanResults =
None
1497 overscans.append(overscanResults
if overscanResults
is not None else None)
1499 self.log.
info(
"Skipped OSCAN for %s.", amp.getName())
1501 if self.config.doCrosstalk
and self.config.doCrosstalkBeforeAssemble:
1502 self.log.
info(
"Applying crosstalk correction.")
1503 self.crosstalk.
run(ccdExposure, crosstalk=crosstalk,
1504 crosstalkSources=crosstalkSources, camera=camera)
1505 self.
debugViewdebugView(ccdExposure,
"doCrosstalk")
1507 if self.config.doAssembleCcd:
1508 self.log.
info(
"Assembling CCD from amplifiers.")
1509 ccdExposure = self.assembleCcd.assembleCcd(ccdExposure)
1511 if self.config.expectWcs
and not ccdExposure.getWcs():
1512 self.log.
warning(
"No WCS found in input exposure.")
1513 self.
debugViewdebugView(ccdExposure,
"doAssembleCcd")
1516 if self.config.qa.doThumbnailOss:
1517 ossThumb = isrQa.makeThumbnail(ccdExposure, isrQaConfig=self.config.qa)
1519 if self.config.doBias
and not self.config.doBiasBeforeOverscan:
1520 self.log.
info(
"Applying bias correction.")
1521 isrFunctions.biasCorrection(ccdExposure.getMaskedImage(), bias.getMaskedImage(),
1522 trimToFit=self.config.doTrimToMatchCalib)
1523 self.
debugViewdebugView(ccdExposure,
"doBias")
1525 if self.config.doVariance:
1526 for amp, overscanResults
in zip(ccd, overscans):
1527 if ccdExposure.getBBox().
contains(amp.getBBox()):
1528 self.log.
debug(
"Constructing variance map for amplifer %s.", amp.getName())
1529 ampExposure = ccdExposure.Factory(ccdExposure, amp.getBBox())
1530 if overscanResults
is not None:
1532 overscanImage=overscanResults.overscanImage,
1538 if self.config.qa
is not None and self.config.qa.saveStats
is True:
1540 afwMath.MEDIAN | afwMath.STDEVCLIP)
1541 self.metadata.
set(f
"ISR VARIANCE {amp.getName()} MEDIAN",
1542 qaStats.getValue(afwMath.MEDIAN))
1543 self.metadata.
set(f
"ISR VARIANCE {amp.getName()} STDEV",
1544 qaStats.getValue(afwMath.STDEVCLIP))
1545 self.log.
debug(
" Variance stats for amplifer %s: %f +/- %f.",
1546 amp.getName(), qaStats.getValue(afwMath.MEDIAN),
1547 qaStats.getValue(afwMath.STDEVCLIP))
1548 if self.config.maskNegativeVariance:
1552 self.log.
info(
"Applying linearizer.")
1553 linearizer.applyLinearity(image=ccdExposure.getMaskedImage().getImage(),
1554 detector=ccd, log=self.log)
1556 if self.config.doCrosstalk
and not self.config.doCrosstalkBeforeAssemble:
1557 self.log.
info(
"Applying crosstalk correction.")
1558 self.crosstalk.
run(ccdExposure, crosstalk=crosstalk,
1559 crosstalkSources=crosstalkSources, isTrimmed=
True)
1560 self.
debugViewdebugView(ccdExposure,
"doCrosstalk")
1565 if self.config.doDefect:
1566 self.log.
info(
"Masking defects.")
1567 self.
maskDefectmaskDefect(ccdExposure, defects)
1569 if self.config.numEdgeSuspect > 0:
1570 self.log.
info(
"Masking edges as SUSPECT.")
1571 self.
maskEdgesmaskEdges(ccdExposure, numEdgePixels=self.config.numEdgeSuspect,
1572 maskPlane=
"SUSPECT", level=self.config.edgeMaskLevel)
1574 if self.config.doNanMasking:
1575 self.log.
info(
"Masking non-finite (NAN, inf) value pixels.")
1576 self.
maskNanmaskNan(ccdExposure)
1578 if self.config.doWidenSaturationTrails:
1579 self.log.
info(
"Widening saturation trails.")
1580 isrFunctions.widenSaturationTrails(ccdExposure.getMaskedImage().getMask())
1582 if self.config.doCameraSpecificMasking:
1583 self.log.
info(
"Masking regions for camera specific reasons.")
1584 self.masking.
run(ccdExposure)
1586 if self.config.doBrighterFatter:
1596 interpExp = ccdExposure.clone()
1597 with self.
flatContextflatContext(interpExp, flat, dark):
1598 isrFunctions.interpolateFromMask(
1599 maskedImage=interpExp.getMaskedImage(),
1600 fwhm=self.config.fwhm,
1601 growSaturatedFootprints=self.config.growSaturationFootprintSize,
1602 maskNameList=
list(self.config.brighterFatterMaskListToInterpolate)
1604 bfExp = interpExp.clone()
1606 self.log.
info(
"Applying brighter-fatter correction using kernel type %s / gains %s.",
1608 bfResults = isrFunctions.brighterFatterCorrection(bfExp, bfKernel,
1609 self.config.brighterFatterMaxIter,
1610 self.config.brighterFatterThreshold,
1611 self.config.brighterFatterApplyGain,
1613 if bfResults[1] == self.config.brighterFatterMaxIter:
1614 self.log.
warning(
"Brighter-fatter correction did not converge, final difference %f.",
1617 self.log.
info(
"Finished brighter-fatter correction in %d iterations.",
1619 image = ccdExposure.getMaskedImage().getImage()
1620 bfCorr = bfExp.getMaskedImage().getImage()
1621 bfCorr -= interpExp.getMaskedImage().getImage()
1630 self.log.
info(
"Ensuring image edges are masked as EDGE to the brighter-fatter kernel size.")
1631 self.
maskEdgesmaskEdges(ccdExposure, numEdgePixels=numpy.max(bfKernel.shape) // 2,
1634 if self.config.brighterFatterMaskGrowSize > 0:
1635 self.log.
info(
"Growing masks to account for brighter-fatter kernel convolution.")
1636 for maskPlane
in self.config.brighterFatterMaskListToInterpolate:
1637 isrFunctions.growMasks(ccdExposure.getMask(),
1638 radius=self.config.brighterFatterMaskGrowSize,
1639 maskNameList=maskPlane,
1640 maskValue=maskPlane)
1642 self.
debugViewdebugView(ccdExposure,
"doBrighterFatter")
1644 if self.config.doDark:
1645 self.log.
info(
"Applying dark correction.")
1647 self.
debugViewdebugView(ccdExposure,
"doDark")
1649 if self.config.doFringe
and not self.config.fringeAfterFlat:
1650 self.log.
info(
"Applying fringe correction before flat.")
1651 self.fringe.
run(ccdExposure, **fringes.getDict())
1652 self.
debugViewdebugView(ccdExposure,
"doFringe")
1654 if self.config.doStrayLight
and self.strayLight.check(ccdExposure):
1655 self.log.
info(
"Checking strayLight correction.")
1656 self.strayLight.
run(ccdExposure, strayLightData)
1657 self.
debugViewdebugView(ccdExposure,
"doStrayLight")
1659 if self.config.doFlat:
1660 self.log.
info(
"Applying flat correction.")
1662 self.
debugViewdebugView(ccdExposure,
"doFlat")
1664 if self.config.doApplyGains:
1665 self.log.
info(
"Applying gain correction instead of flat.")
1666 if self.config.usePtcGains:
1667 self.log.
info(
"Using gains from the Photon Transfer Curve.")
1668 isrFunctions.applyGains(ccdExposure, self.config.normalizeGains,
1671 isrFunctions.applyGains(ccdExposure, self.config.normalizeGains)
1673 if self.config.doFringe
and self.config.fringeAfterFlat:
1674 self.log.
info(
"Applying fringe correction after flat.")
1675 self.fringe.
run(ccdExposure, **fringes.getDict())
1677 if self.config.doVignette:
1678 self.log.
info(
"Constructing Vignette polygon.")
1681 if self.config.vignette.doWriteVignettePolygon:
1684 if self.config.doAttachTransmissionCurve:
1685 self.log.
info(
"Adding transmission curves.")
1686 isrFunctions.attachTransmissionCurve(ccdExposure, opticsTransmission=opticsTransmission,
1687 filterTransmission=filterTransmission,
1688 sensorTransmission=sensorTransmission,
1689 atmosphereTransmission=atmosphereTransmission)
1691 flattenedThumb =
None
1692 if self.config.qa.doThumbnailFlattened:
1693 flattenedThumb = isrQa.makeThumbnail(ccdExposure, isrQaConfig=self.config.qa)
1695 if self.config.doIlluminationCorrection
and physicalFilter
in self.config.illumFilters:
1696 self.log.
info(
"Performing illumination correction.")
1697 isrFunctions.illuminationCorrection(ccdExposure.getMaskedImage(),
1698 illumMaskedImage, illumScale=self.config.illumScale,
1699 trimToFit=self.config.doTrimToMatchCalib)
1702 if self.config.doSaveInterpPixels:
1703 preInterpExp = ccdExposure.clone()
1718 if self.config.doSetBadRegions:
1719 badPixelCount, badPixelValue = isrFunctions.setBadRegions(ccdExposure)
1720 if badPixelCount > 0:
1721 self.log.
info(
"Set %d BAD pixels to %f.", badPixelCount, badPixelValue)
1723 if self.config.doInterpolate:
1724 self.log.
info(
"Interpolating masked pixels.")
1725 isrFunctions.interpolateFromMask(
1726 maskedImage=ccdExposure.getMaskedImage(),
1727 fwhm=self.config.fwhm,
1728 growSaturatedFootprints=self.config.growSaturationFootprintSize,
1729 maskNameList=
list(self.config.maskListToInterpolate)
1735 if self.config.doAmpOffset:
1736 self.log.
info(
"Correcting amp offsets.")
1737 self.ampOffset.
run(ccdExposure)
1739 if self.config.doMeasureBackground:
1740 self.log.
info(
"Measuring background level.")
1743 if self.config.qa
is not None and self.config.qa.saveStats
is True:
1745 ampExposure = ccdExposure.Factory(ccdExposure, amp.getBBox())
1747 afwMath.MEDIAN | afwMath.STDEVCLIP)
1748 self.metadata.
set(
"ISR BACKGROUND {} MEDIAN".
format(amp.getName()),
1749 qaStats.getValue(afwMath.MEDIAN))
1750 self.metadata.
set(
"ISR BACKGROUND {} STDEV".
format(amp.getName()),
1751 qaStats.getValue(afwMath.STDEVCLIP))
1752 self.log.
debug(
" Background stats for amplifer %s: %f +/- %f",
1753 amp.getName(), qaStats.getValue(afwMath.MEDIAN),
1754 qaStats.getValue(afwMath.STDEVCLIP))
1756 self.
debugViewdebugView(ccdExposure,
"postISRCCD")
1758 return pipeBase.Struct(
1759 exposure=ccdExposure,
1761 flattenedThumb=flattenedThumb,
1763 preInterpExposure=preInterpExp,
1764 outputExposure=ccdExposure,
1765 outputOssThumbnail=ossThumb,
1766 outputFlattenedThumbnail=flattenedThumb,
1769 @pipeBase.timeMethod
1771 """Perform instrument signature removal on a ButlerDataRef of a Sensor.
1773 This method contains the `CmdLineTask` interface to the ISR
1774 processing. All IO is handled here, freeing the `run()` method
1775 to manage only pixel-level calculations. The steps performed
1777 - Read in necessary detrending/isr/calibration data.
1778 - Process raw exposure in `run()`.
1779 - Persist the ISR-corrected exposure as "postISRCCD" if
1780 config.doWrite=True.
1784 sensorRef : `daf.persistence.butlerSubset.ButlerDataRef`
1785 DataRef of the detector data to be processed
1789 result : `lsst.pipe.base.Struct`
1790 Result struct with component:
1791 - ``exposure`` : `afw.image.Exposure`
1792 The fully ISR corrected exposure.
1797 Raised if a configuration option is set to True, but the
1798 required calibration data does not exist.
1801 self.log.
info(
"Performing ISR on sensor %s.", sensorRef.dataId)
1803 ccdExposure = sensorRef.get(self.config.datasetType)
1805 camera = sensorRef.get(
"camera")
1806 isrData = self.
readIsrDatareadIsrData(sensorRef, ccdExposure)
1808 result = self.
runrun(ccdExposure, camera=camera, **isrData.getDict())
1810 if self.config.doWrite:
1811 sensorRef.put(result.exposure,
"postISRCCD")
1812 if result.preInterpExposure
is not None:
1813 sensorRef.put(result.preInterpExposure,
"postISRCCD_uninterpolated")
1814 if result.ossThumb
is not None:
1815 isrQa.writeThumbnail(sensorRef, result.ossThumb,
"ossThumb")
1816 if result.flattenedThumb
is not None:
1817 isrQa.writeThumbnail(sensorRef, result.flattenedThumb,
"flattenedThumb")
1822 """Retrieve a calibration dataset for removing instrument signature.
1827 dataRef : `daf.persistence.butlerSubset.ButlerDataRef`
1828 DataRef of the detector data to find calibration datasets
1831 Type of dataset to retrieve (e.g. 'bias', 'flat', etc).
1832 dateObs : `str`, optional
1833 Date of the observation. Used to correct butler failures
1834 when using fallback filters.
1836 If True, disable butler proxies to enable error handling
1837 within this routine.
1841 exposure : `lsst.afw.image.Exposure`
1842 Requested calibration frame.
1847 Raised if no matching calibration frame can be found.
1850 exp = dataRef.get(datasetType, immediate=immediate)
1851 except Exception
as exc1:
1852 if not self.config.fallbackFilterName:
1853 raise RuntimeError(
"Unable to retrieve %s for %s: %s." % (datasetType, dataRef.dataId, exc1))
1855 if self.config.useFallbackDate
and dateObs:
1856 exp = dataRef.get(datasetType, filter=self.config.fallbackFilterName,
1857 dateObs=dateObs, immediate=immediate)
1859 exp = dataRef.get(datasetType, filter=self.config.fallbackFilterName, immediate=immediate)
1860 except Exception
as exc2:
1861 raise RuntimeError(
"Unable to retrieve %s for %s, even with fallback filter %s: %s AND %s." %
1862 (datasetType, dataRef.dataId, self.config.fallbackFilterName, exc1, exc2))
1863 self.log.
warning(
"Using fallback calibration from filter %s.", self.config.fallbackFilterName)
1865 if self.config.doAssembleIsrExposures:
1866 exp = self.assembleCcd.assembleCcd(exp)
1870 """Ensure that the data returned by Butler is a fully constructed exp.
1872 ISR requires exposure-level image data for historical reasons, so if we
1873 did not recieve that from Butler, construct it from what we have,
1874 modifying the input in place.
1878 inputExp : `lsst.afw.image.Exposure`, `lsst.afw.image.DecoratedImageU`,
1879 or `lsst.afw.image.ImageF`
1880 The input data structure obtained from Butler.
1881 camera : `lsst.afw.cameraGeom.camera`, optional
1882 The camera associated with the image. Used to find the appropriate
1883 detector if detector is not already set.
1884 detectorNum : `int`, optional
1885 The detector in the camera to attach, if the detector is not
1890 inputExp : `lsst.afw.image.Exposure`
1891 The re-constructed exposure, with appropriate detector parameters.
1896 Raised if the input data cannot be used to construct an exposure.
1898 if isinstance(inputExp, afwImage.DecoratedImageU):
1900 elif isinstance(inputExp, afwImage.ImageF):
1902 elif isinstance(inputExp, afwImage.MaskedImageF):
1906 elif inputExp
is None:
1910 raise TypeError(
"Input Exposure is not known type in isrTask.ensureExposure: %s." %
1913 if inputExp.getDetector()
is None:
1914 if camera
is None or detectorNum
is None:
1915 raise RuntimeError(
'Must supply both a camera and detector number when using exposures '
1916 'without a detector set.')
1917 inputExp.setDetector(camera[detectorNum])
1922 """Convert exposure image from uint16 to float.
1924 If the exposure does not need to be converted, the input is
1925 immediately returned. For exposures that are converted to use
1926 floating point pixels, the variance is set to unity and the
1931 exposure : `lsst.afw.image.Exposure`
1932 The raw exposure to be converted.
1936 newexposure : `lsst.afw.image.Exposure`
1937 The input ``exposure``, converted to floating point pixels.
1942 Raised if the exposure type cannot be converted to float.
1945 if isinstance(exposure, afwImage.ExposureF):
1947 self.log.
debug(
"Exposure already of type float.")
1949 if not hasattr(exposure,
"convertF"):
1950 raise RuntimeError(
"Unable to convert exposure (%s) to float." %
type(exposure))
1952 newexposure = exposure.convertF()
1953 newexposure.variance[:] = 1
1954 newexposure.mask[:] = 0x0
1959 """Identify bad amplifiers, saturated and suspect pixels.
1963 ccdExposure : `lsst.afw.image.Exposure`
1964 Input exposure to be masked.
1965 amp : `lsst.afw.table.AmpInfoCatalog`
1966 Catalog of parameters defining the amplifier on this
1968 defects : `lsst.ip.isr.Defects`
1969 List of defects. Used to determine if the entire
1975 If this is true, the entire amplifier area is covered by
1976 defects and unusable.
1979 maskedImage = ccdExposure.getMaskedImage()
1986 if defects
is not None:
1987 badAmp = bool(sum([v.getBBox().
contains(amp.getBBox())
for v
in defects]))
1993 dataView = afwImage.MaskedImageF(maskedImage, amp.getRawBBox(),
1995 maskView = dataView.getMask()
1996 maskView |= maskView.getPlaneBitMask(
"BAD")
2004 if self.config.doSaturation
and not badAmp:
2005 limits.update({self.config.saturatedMaskName: amp.getSaturation()})
2006 if self.config.doSuspect
and not badAmp:
2007 limits.update({self.config.suspectMaskName: amp.getSuspectLevel()})
2008 if math.isfinite(self.config.saturation):
2009 limits.update({self.config.saturatedMaskName: self.config.saturation})
2011 for maskName, maskThreshold
in limits.items():
2012 if not math.isnan(maskThreshold):
2013 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2014 isrFunctions.makeThresholdMask(
2015 maskedImage=dataView,
2016 threshold=maskThreshold,
2023 maskView =
afwImage.Mask(maskedImage.getMask(), amp.getRawDataBBox(),
2025 maskVal = maskView.getPlaneBitMask([self.config.saturatedMaskName,
2026 self.config.suspectMaskName])
2027 if numpy.all(maskView.getArray() & maskVal > 0):
2029 maskView |= maskView.getPlaneBitMask(
"BAD")
2034 """Apply overscan correction in place.
2036 This method does initial pixel rejection of the overscan
2037 region. The overscan can also be optionally segmented to
2038 allow for discontinuous overscan responses to be fit
2039 separately. The actual overscan subtraction is performed by
2040 the `lsst.ip.isr.isrFunctions.overscanCorrection` function,
2041 which is called here after the amplifier is preprocessed.
2045 ccdExposure : `lsst.afw.image.Exposure`
2046 Exposure to have overscan correction performed.
2047 amp : `lsst.afw.cameraGeom.Amplifer`
2048 The amplifier to consider while correcting the overscan.
2052 overscanResults : `lsst.pipe.base.Struct`
2053 Result struct with components:
2054 - ``imageFit`` : scalar or `lsst.afw.image.Image`
2055 Value or fit subtracted from the amplifier image data.
2056 - ``overscanFit`` : scalar or `lsst.afw.image.Image`
2057 Value or fit subtracted from the overscan image data.
2058 - ``overscanImage`` : `lsst.afw.image.Image`
2059 Image of the overscan region with the overscan
2060 correction applied. This quantity is used to estimate
2061 the amplifier read noise empirically.
2066 Raised if the ``amp`` does not contain raw pixel information.
2070 lsst.ip.isr.isrFunctions.overscanCorrection
2072 if amp.getRawHorizontalOverscanBBox().isEmpty():
2073 self.log.
info(
"ISR_OSCAN: No overscan region. Not performing overscan correction.")
2077 statControl.setAndMask(ccdExposure.mask.getPlaneBitMask(
"SAT"))
2080 dataBBox = amp.getRawDataBBox()
2081 oscanBBox = amp.getRawHorizontalOverscanBBox()
2085 prescanBBox = amp.getRawPrescanBBox()
2086 if (oscanBBox.getBeginX() > prescanBBox.getBeginX()):
2087 dx0 += self.config.overscanNumLeadingColumnsToSkip
2088 dx1 -= self.config.overscanNumTrailingColumnsToSkip
2090 dx0 += self.config.overscanNumTrailingColumnsToSkip
2091 dx1 -= self.config.overscanNumLeadingColumnsToSkip
2098 if ((self.config.overscanBiasJump
2099 and self.config.overscanBiasJumpLocation)
2100 and (ccdExposure.getMetadata().exists(self.config.overscanBiasJumpKeyword)
2101 and ccdExposure.getMetadata().getScalar(self.config.overscanBiasJumpKeyword)
in
2102 self.config.overscanBiasJumpDevices)):
2103 if amp.getReadoutCorner()
in (ReadoutCorner.LL, ReadoutCorner.LR):
2104 yLower = self.config.overscanBiasJumpLocation
2105 yUpper = dataBBox.getHeight() - yLower
2107 yUpper = self.config.overscanBiasJumpLocation
2108 yLower = dataBBox.getHeight() - yUpper
2126 oscanBBox.getHeight())))
2130 for imageBBox, overscanBBox
in zip(imageBBoxes, overscanBBoxes):
2131 ampImage = ccdExposure.maskedImage[imageBBox]
2132 overscanImage = ccdExposure.maskedImage[overscanBBox]
2134 overscanArray = overscanImage.image.array
2135 median = numpy.ma.median(numpy.ma.masked_where(overscanImage.mask.array, overscanArray))
2136 bad = numpy.where(numpy.abs(overscanArray - median) > self.config.overscanMaxDev)
2137 overscanImage.mask.array[bad] = overscanImage.mask.getPlaneBitMask(
"SAT")
2140 statControl.setAndMask(ccdExposure.mask.getPlaneBitMask(
"SAT"))
2142 overscanResults = self.overscan.
run(ampImage.getImage(), overscanImage, amp)
2145 levelStat = afwMath.MEDIAN
2146 sigmaStat = afwMath.STDEVCLIP
2149 self.config.qa.flatness.nIter)
2150 metadata = ccdExposure.getMetadata()
2151 ampNum = amp.getName()
2153 if isinstance(overscanResults.overscanFit, float):
2154 metadata.set(
"ISR_OSCAN_LEVEL%s" % ampNum, overscanResults.overscanFit)
2155 metadata.set(
"ISR_OSCAN_SIGMA%s" % ampNum, 0.0)
2158 metadata.set(
"ISR_OSCAN_LEVEL%s" % ampNum, stats.getValue(levelStat))
2159 metadata.set(
"ISR_OSCAN_SIGMA%s" % ampNum, stats.getValue(sigmaStat))
2161 return overscanResults
2164 """Set the variance plane using the gain and read noise
2166 The read noise is calculated from the ``overscanImage`` if the
2167 ``doEmpiricalReadNoise`` option is set in the configuration; otherwise
2168 the value from the amplifier data is used.
2172 ampExposure : `lsst.afw.image.Exposure`
2173 Exposure to process.
2174 amp : `lsst.afw.table.AmpInfoRecord` or `FakeAmp`
2175 Amplifier detector data.
2176 overscanImage : `lsst.afw.image.MaskedImage`, optional.
2177 Image of overscan, required only for empirical read noise.
2178 ptcDataset : `lsst.ip.isr.PhotonTransferCurveDataset`, optional
2179 PTC dataset containing the gains and read noise.
2185 Raised if either ``usePtcGains`` of ``usePtcReadNoise``
2186 are ``True``, but ptcDataset is not provided.
2188 Raised if ```doEmpiricalReadNoise`` is ``True`` but
2189 ``overscanImage`` is ``None``.
2193 lsst.ip.isr.isrFunctions.updateVariance
2195 maskPlanes = [self.config.saturatedMaskName, self.config.suspectMaskName]
2196 if self.config.usePtcGains:
2197 if ptcDataset
is None:
2198 raise RuntimeError(
"No ptcDataset provided to use PTC gains.")
2200 gain = ptcDataset.gain[amp.getName()]
2201 self.log.
info(
"Using gain from Photon Transfer Curve.")
2203 gain = amp.getGain()
2205 if math.isnan(gain):
2207 self.log.
warning(
"Gain set to NAN! Updating to 1.0 to generate Poisson variance.")
2210 self.log.
warning(
"Gain for amp %s == %g <= 0; setting to %f.",
2211 amp.getName(), gain, patchedGain)
2214 if self.config.doEmpiricalReadNoise
and overscanImage
is None:
2215 raise RuntimeError(
"Overscan is none for EmpiricalReadNoise.")
2217 if self.config.doEmpiricalReadNoise
and overscanImage
is not None:
2219 stats.setAndMask(overscanImage.mask.getPlaneBitMask(maskPlanes))
2221 self.log.
info(
"Calculated empirical read noise for amp %s: %f.",
2222 amp.getName(), readNoise)
2223 elif self.config.usePtcReadNoise:
2224 if ptcDataset
is None:
2225 raise RuntimeError(
"No ptcDataset provided to use PTC readnoise.")
2227 readNoise = ptcDataset.noise[amp.getName()]
2228 self.log.
info(
"Using read noise from Photon Transfer Curve.")
2230 readNoise = amp.getReadNoise()
2232 isrFunctions.updateVariance(
2233 maskedImage=ampExposure.getMaskedImage(),
2235 readNoise=readNoise,
2239 """Identify and mask pixels with negative variance values.
2243 exposure : `lsst.afw.image.Exposure`
2244 Exposure to process.
2248 lsst.ip.isr.isrFunctions.updateVariance
2250 maskPlane = exposure.getMask().getPlaneBitMask(self.config.negativeVarianceMaskName)
2251 bad = numpy.where(exposure.getVariance().getArray() <= 0.0)
2252 exposure.mask.array[bad] |= maskPlane
2255 """Apply dark correction in place.
2259 exposure : `lsst.afw.image.Exposure`
2260 Exposure to process.
2261 darkExposure : `lsst.afw.image.Exposure`
2262 Dark exposure of the same size as ``exposure``.
2263 invert : `Bool`, optional
2264 If True, re-add the dark to an already corrected image.
2269 Raised if either ``exposure`` or ``darkExposure`` do not
2270 have their dark time defined.
2274 lsst.ip.isr.isrFunctions.darkCorrection
2276 expScale = exposure.getInfo().getVisitInfo().getDarkTime()
2277 if math.isnan(expScale):
2278 raise RuntimeError(
"Exposure darktime is NAN.")
2279 if darkExposure.getInfo().getVisitInfo()
is not None \
2280 and not math.isnan(darkExposure.getInfo().getVisitInfo().getDarkTime()):
2281 darkScale = darkExposure.getInfo().getVisitInfo().getDarkTime()
2285 self.log.
warning(
"darkExposure.getInfo().getVisitInfo() does not exist. Using darkScale = 1.0.")
2288 isrFunctions.darkCorrection(
2289 maskedImage=exposure.getMaskedImage(),
2290 darkMaskedImage=darkExposure.getMaskedImage(),
2292 darkScale=darkScale,
2294 trimToFit=self.config.doTrimToMatchCalib
2298 """Check if linearization is needed for the detector cameraGeom.
2300 Checks config.doLinearize and the linearity type of the first
2305 detector : `lsst.afw.cameraGeom.Detector`
2306 Detector to get linearity type from.
2310 doLinearize : `Bool`
2311 If True, linearization should be performed.
2313 return self.config.doLinearize
and \
2314 detector.getAmplifiers()[0].getLinearityType() != NullLinearityType
2317 """Apply flat correction in place.
2321 exposure : `lsst.afw.image.Exposure`
2322 Exposure to process.
2323 flatExposure : `lsst.afw.image.Exposure`
2324 Flat exposure of the same size as ``exposure``.
2325 invert : `Bool`, optional
2326 If True, unflatten an already flattened image.
2330 lsst.ip.isr.isrFunctions.flatCorrection
2332 isrFunctions.flatCorrection(
2333 maskedImage=exposure.getMaskedImage(),
2334 flatMaskedImage=flatExposure.getMaskedImage(),
2335 scalingType=self.config.flatScalingType,
2336 userScale=self.config.flatUserScale,
2338 trimToFit=self.config.doTrimToMatchCalib
2342 """Detect and mask saturated pixels in config.saturatedMaskName.
2346 exposure : `lsst.afw.image.Exposure`
2347 Exposure to process. Only the amplifier DataSec is processed.
2348 amp : `lsst.afw.table.AmpInfoCatalog`
2349 Amplifier detector data.
2353 lsst.ip.isr.isrFunctions.makeThresholdMask
2355 if not math.isnan(amp.getSaturation()):
2356 maskedImage = exposure.getMaskedImage()
2357 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2358 isrFunctions.makeThresholdMask(
2359 maskedImage=dataView,
2360 threshold=amp.getSaturation(),
2362 maskName=self.config.saturatedMaskName,
2366 """Interpolate over saturated pixels, in place.
2368 This method should be called after `saturationDetection`, to
2369 ensure that the saturated pixels have been identified in the
2370 SAT mask. It should also be called after `assembleCcd`, since
2371 saturated regions may cross amplifier boundaries.
2375 exposure : `lsst.afw.image.Exposure`
2376 Exposure to process.
2380 lsst.ip.isr.isrTask.saturationDetection
2381 lsst.ip.isr.isrFunctions.interpolateFromMask
2383 isrFunctions.interpolateFromMask(
2384 maskedImage=exposure.getMaskedImage(),
2385 fwhm=self.config.fwhm,
2386 growSaturatedFootprints=self.config.growSaturationFootprintSize,
2387 maskNameList=
list(self.config.saturatedMaskName),
2391 """Detect and mask suspect pixels in config.suspectMaskName.
2395 exposure : `lsst.afw.image.Exposure`
2396 Exposure to process. Only the amplifier DataSec is processed.
2397 amp : `lsst.afw.table.AmpInfoCatalog`
2398 Amplifier detector data.
2402 lsst.ip.isr.isrFunctions.makeThresholdMask
2406 Suspect pixels are pixels whose value is greater than
2407 amp.getSuspectLevel(). This is intended to indicate pixels that may be
2408 affected by unknown systematics; for example if non-linearity
2409 corrections above a certain level are unstable then that would be a
2410 useful value for suspectLevel. A value of `nan` indicates that no such
2411 level exists and no pixels are to be masked as suspicious.
2413 suspectLevel = amp.getSuspectLevel()
2414 if math.isnan(suspectLevel):
2417 maskedImage = exposure.getMaskedImage()
2418 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2419 isrFunctions.makeThresholdMask(
2420 maskedImage=dataView,
2421 threshold=suspectLevel,
2423 maskName=self.config.suspectMaskName,
2427 """Mask defects using mask plane "BAD", in place.
2431 exposure : `lsst.afw.image.Exposure`
2432 Exposure to process.
2433 defectBaseList : `lsst.ip.isr.Defects` or `list` of
2434 `lsst.afw.image.DefectBase`.
2435 List of defects to mask.
2439 Call this after CCD assembly, since defects may cross amplifier
2442 maskedImage = exposure.getMaskedImage()
2443 if not isinstance(defectBaseList, Defects):
2445 defectList =
Defects(defectBaseList)
2447 defectList = defectBaseList
2448 defectList.maskPixels(maskedImage, maskName=
"BAD")
2450 def maskEdges(self, exposure, numEdgePixels=0, maskPlane="SUSPECT", level='DETECTOR'):
2451 """Mask edge pixels with applicable mask plane.
2455 exposure : `lsst.afw.image.Exposure`
2456 Exposure to process.
2457 numEdgePixels : `int`, optional
2458 Number of edge pixels to mask.
2459 maskPlane : `str`, optional
2460 Mask plane name to use.
2461 level : `str`, optional
2462 Level at which to mask edges.
2464 maskedImage = exposure.getMaskedImage()
2465 maskBitMask = maskedImage.getMask().getPlaneBitMask(maskPlane)
2467 if numEdgePixels > 0:
2468 if level ==
'DETECTOR':
2469 boxes = [maskedImage.getBBox()]
2470 elif level ==
'AMP':
2471 boxes = [amp.getBBox()
for amp
in exposure.getDetector()]
2476 subImage = maskedImage[box]
2477 box.grow(-numEdgePixels)
2479 SourceDetectionTask.setEdgeBits(
2485 """Mask and interpolate defects using mask plane "BAD", in place.
2489 exposure : `lsst.afw.image.Exposure`
2490 Exposure to process.
2491 defectBaseList : `lsst.ip.isr.Defects` or `list` of
2492 `lsst.afw.image.DefectBase`.
2493 List of defects to mask and interpolate.
2497 lsst.ip.isr.isrTask.maskDefect
2499 self.
maskDefectmaskDefect(exposure, defectBaseList)
2500 self.
maskEdgesmaskEdges(exposure, numEdgePixels=self.config.numEdgeSuspect,
2501 maskPlane=
"SUSPECT", level=self.config.edgeMaskLevel)
2502 isrFunctions.interpolateFromMask(
2503 maskedImage=exposure.getMaskedImage(),
2504 fwhm=self.config.fwhm,
2505 growSaturatedFootprints=0,
2506 maskNameList=[
"BAD"],
2510 """Mask NaNs using mask plane "UNMASKEDNAN", in place.
2514 exposure : `lsst.afw.image.Exposure`
2515 Exposure to process.
2519 We mask over all non-finite values (NaN, inf), including those
2520 that are masked with other bits (because those may or may not be
2521 interpolated over later, and we want to remove all NaN/infs).
2522 Despite this behaviour, the "UNMASKEDNAN" mask plane is used to
2523 preserve the historical name.
2525 maskedImage = exposure.getMaskedImage()
2528 maskedImage.getMask().addMaskPlane(
"UNMASKEDNAN")
2529 maskVal = maskedImage.getMask().getPlaneBitMask(
"UNMASKEDNAN")
2530 numNans =
maskNans(maskedImage, maskVal)
2531 self.metadata.
set(
"NUMNANS", numNans)
2533 self.log.
warning(
"There were %d unmasked NaNs.", numNans)
2536 """"Mask and interpolate NaN/infs using mask plane "UNMASKEDNAN",
2541 exposure : `lsst.afw.image.Exposure`
2542 Exposure to process.
2546 lsst.ip.isr.isrTask.maskNan
2549 isrFunctions.interpolateFromMask(
2550 maskedImage=exposure.getMaskedImage(),
2551 fwhm=self.config.fwhm,
2552 growSaturatedFootprints=0,
2553 maskNameList=[
"UNMASKEDNAN"],
2557 """Measure the image background in subgrids, for quality control.
2561 exposure : `lsst.afw.image.Exposure`
2562 Exposure to process.
2563 IsrQaConfig : `lsst.ip.isr.isrQa.IsrQaConfig`
2564 Configuration object containing parameters on which background
2565 statistics and subgrids to use.
2567 if IsrQaConfig
is not None:
2569 IsrQaConfig.flatness.nIter)
2570 maskVal = exposure.getMaskedImage().getMask().getPlaneBitMask([
"BAD",
"SAT",
"DETECTED"])
2571 statsControl.setAndMask(maskVal)
2572 maskedImage = exposure.getMaskedImage()
2574 skyLevel = stats.getValue(afwMath.MEDIAN)
2575 skySigma = stats.getValue(afwMath.STDEVCLIP)
2576 self.log.
info(
"Flattened sky level: %f +/- %f.", skyLevel, skySigma)
2577 metadata = exposure.getMetadata()
2578 metadata.set(
'SKYLEVEL', skyLevel)
2579 metadata.set(
'SKYSIGMA', skySigma)
2582 stat = afwMath.MEANCLIP
if IsrQaConfig.flatness.doClip
else afwMath.MEAN
2583 meshXHalf = int(IsrQaConfig.flatness.meshX/2.)
2584 meshYHalf = int(IsrQaConfig.flatness.meshY/2.)
2585 nX = int((exposure.getWidth() + meshXHalf) / IsrQaConfig.flatness.meshX)
2586 nY = int((exposure.getHeight() + meshYHalf) / IsrQaConfig.flatness.meshY)
2587 skyLevels = numpy.zeros((nX, nY))
2590 yc = meshYHalf + j * IsrQaConfig.flatness.meshY
2592 xc = meshXHalf + i * IsrQaConfig.flatness.meshX
2594 xLLC = xc - meshXHalf
2595 yLLC = yc - meshYHalf
2596 xURC = xc + meshXHalf - 1
2597 yURC = yc + meshYHalf - 1
2600 miMesh = maskedImage.Factory(exposure.getMaskedImage(), bbox, afwImage.LOCAL)
2604 good = numpy.where(numpy.isfinite(skyLevels))
2605 skyMedian = numpy.median(skyLevels[good])
2606 flatness = (skyLevels[good] - skyMedian) / skyMedian
2607 flatness_rms = numpy.std(flatness)
2608 flatness_pp = flatness.max() - flatness.min()
if len(flatness) > 0
else numpy.nan
2610 self.log.
info(
"Measuring sky levels in %dx%d grids: %f.", nX, nY, skyMedian)
2611 self.log.
info(
"Sky flatness in %dx%d grids - pp: %f rms: %f.",
2612 nX, nY, flatness_pp, flatness_rms)
2614 metadata.set(
'FLATNESS_PP', float(flatness_pp))
2615 metadata.set(
'FLATNESS_RMS', float(flatness_rms))
2616 metadata.set(
'FLATNESS_NGRIDS',
'%dx%d' % (nX, nY))
2617 metadata.set(
'FLATNESS_MESHX', IsrQaConfig.flatness.meshX)
2618 metadata.set(
'FLATNESS_MESHY', IsrQaConfig.flatness.meshY)
2621 """Set an approximate magnitude zero point for the exposure.
2625 exposure : `lsst.afw.image.Exposure`
2626 Exposure to process.
2628 filterLabel = exposure.getFilterLabel()
2629 physicalFilter = isrFunctions.getPhysicalFilter(filterLabel, self.log)
2631 if physicalFilter
in self.config.fluxMag0T1:
2632 fluxMag0 = self.config.fluxMag0T1[physicalFilter]
2634 self.log.
warning(
"No rough magnitude zero point defined for filter %s.", physicalFilter)
2635 fluxMag0 = self.config.defaultFluxMag0T1
2637 expTime = exposure.getInfo().getVisitInfo().getExposureTime()
2639 self.log.
warning(
"Non-positive exposure time; skipping rough zero point.")
2642 self.log.
info(
"Setting rough magnitude zero point for filter %s: %f",
2643 physicalFilter, 2.5*math.log10(fluxMag0*expTime))
2647 """Set valid polygon as the intersection of fpPolygon and chip corners.
2651 ccdExposure : `lsst.afw.image.Exposure`
2652 Exposure to process.
2653 fpPolygon : `lsst.afw.geom.Polygon`
2654 Polygon in focal plane coordinates.
2657 ccd = ccdExposure.getDetector()
2658 fpCorners = ccd.getCorners(FOCAL_PLANE)
2659 ccdPolygon =
Polygon(fpCorners)
2662 intersect = ccdPolygon.intersectionSingle(fpPolygon)
2665 ccdPoints = ccd.transform(intersect, FOCAL_PLANE, PIXELS)
2666 validPolygon =
Polygon(ccdPoints)
2667 ccdExposure.getInfo().setValidPolygon(validPolygon)
2671 """Context manager that applies and removes flats and darks,
2672 if the task is configured to apply them.
2676 exp : `lsst.afw.image.Exposure`
2677 Exposure to process.
2678 flat : `lsst.afw.image.Exposure`
2679 Flat exposure the same size as ``exp``.
2680 dark : `lsst.afw.image.Exposure`, optional
2681 Dark exposure the same size as ``exp``.
2685 exp : `lsst.afw.image.Exposure`
2686 The flat and dark corrected exposure.
2688 if self.config.doDark
and dark
is not None:
2690 if self.config.doFlat:
2695 if self.config.doFlat:
2697 if self.config.doDark
and dark
is not None:
2701 """Utility function to examine ISR exposure at different stages.
2705 exposure : `lsst.afw.image.Exposure`
2708 State of processing to view.
2713 display.scale(
'asinh',
'zscale')
2714 display.mtv(exposure)
2715 prompt =
"Press Enter to continue [c]... "
2717 ans = input(prompt).lower()
2718 if ans
in (
"",
"c",):
2723 """A Detector-like object that supports returning gain and saturation level
2725 This is used when the input exposure does not have a detector.
2729 exposure : `lsst.afw.image.Exposure`
2730 Exposure to generate a fake amplifier for.
2731 config : `lsst.ip.isr.isrTaskConfig`
2732 Configuration to apply to the fake amplifier.
2736 self.
_bbox_bbox = exposure.getBBox(afwImage.LOCAL)
2738 self.
_gain_gain = config.gain
2743 return self.
_bbox_bbox
2746 return self.
_bbox_bbox
2752 return self.
_gain_gain
2765 isr = pexConfig.ConfigurableField(target=IsrTask, doc=
"Instrument signature removal")
2769 """Task to wrap the default IsrTask to allow it to be retargeted.
2771 The standard IsrTask can be called directly from a command line
2772 program, but doing so removes the ability of the task to be
2773 retargeted. As most cameras override some set of the IsrTask
2774 methods, this would remove those data-specific methods in the
2775 output post-ISR images. This wrapping class fixes the issue,
2776 allowing identical post-ISR images to be generated by both the
2777 processCcd and isrTask code.
2779 ConfigClass = RunIsrConfig
2780 _DefaultName =
"runIsr"
2784 self.makeSubtask(
"isr")
2790 dataRef : `lsst.daf.persistence.ButlerDataRef`
2791 data reference of the detector data to be processed
2795 result : `pipeBase.Struct`
2796 Result struct with component:
2798 - exposure : `lsst.afw.image.Exposure`
2799 Post-ISR processed exposure.
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Represent a 2-dimensional array of bitmask pixels.
Pass parameters to a Statistics object.
An integer coordinate rectangle.
def getRawHorizontalOverscanBBox(self)
def getSuspectLevel(self)
_RawHorizontalOverscanBBox
def __init__(self, exposure, config)
doSaturationInterpolation
def __init__(self, *config=None)
def flatCorrection(self, exposure, flatExposure, invert=False)
def maskAndInterpolateNan(self, exposure)
def saturationInterpolation(self, exposure)
def runDataRef(self, sensorRef)
def maskNan(self, exposure)
def maskAmplifier(self, ccdExposure, amp, defects)
def debugView(self, exposure, stepname)
def ensureExposure(self, inputExp, camera=None, detectorNum=None)
def getIsrExposure(self, dataRef, datasetType, dateObs=None, immediate=True)
def maskNegativeVariance(self, exposure)
def saturationDetection(self, exposure, amp)
def maskDefect(self, exposure, defectBaseList)
def __init__(self, **kwargs)
def runQuantum(self, butlerQC, inputRefs, outputRefs)
def maskEdges(self, exposure, numEdgePixels=0, maskPlane="SUSPECT", level='DETECTOR')
def overscanCorrection(self, ccdExposure, amp)
def measureBackground(self, exposure, IsrQaConfig=None)
def roughZeroPoint(self, exposure)
def maskAndInterpolateDefects(self, exposure, defectBaseList)
def setValidPolygonIntersect(self, ccdExposure, fpPolygon)
def readIsrData(self, dataRef, rawExposure)
def run(self, ccdExposure, *camera=None, bias=None, linearizer=None, crosstalk=None, crosstalkSources=None, dark=None, flat=None, ptc=None, bfKernel=None, bfGains=None, defects=None, fringes=pipeBase.Struct(fringes=None), opticsTransmission=None, filterTransmission=None, sensorTransmission=None, atmosphereTransmission=None, detectorNum=None, strayLightData=None, illumMaskedImage=None, isGen3=False)
def doLinearize(self, detector)
def flatContext(self, exp, flat, dark=None)
def convertIntToFloat(self, exposure)
def suspectDetection(self, exposure, amp)
def updateVariance(self, ampExposure, amp, overscanImage=None, ptcDataset=None)
def darkCorrection(self, exposure, darkExposure, invert=False)
def __init__(self, *args, **kwargs)
def runDataRef(self, dataRef)
daf::base::PropertyList * list
daf::base::PropertySet * set
std::shared_ptr< FrameSet > append(FrameSet const &first, FrameSet const &second)
Construct a FrameSet that performs two transformations in series.
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
std::shared_ptr< PhotoCalib > makePhotoCalibFromCalibZeroPoint(double instFluxMag0, double instFluxMag0Err)
Construct a PhotoCalib from the deprecated Calib-style instFluxMag0/instFluxMag0Err values.
std::shared_ptr< Exposure< ImagePixelT, MaskPixelT, VariancePixelT > > makeExposure(MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > &mimage, std::shared_ptr< geom::SkyWcs const > wcs=std::shared_ptr< geom::SkyWcs const >())
A function to return an Exposure of the correct type (cf.
MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > * makeMaskedImage(typename std::shared_ptr< Image< ImagePixelT >> image, typename std::shared_ptr< Mask< MaskPixelT >> mask=Mask< MaskPixelT >(), typename std::shared_ptr< Image< VariancePixelT >> variance=Image< VariancePixelT >())
A function to return a MaskedImage of the correct type (cf.
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
def checkFilter(exposure, filterList, log)
def crosstalkSourceLookup(datasetType, registry, quantumDataId, collections)
size_t maskNans(afw::image::MaskedImage< PixelT > const &mi, afw::image::MaskPixel maskVal, afw::image::MaskPixel allow=0)
Mask NANs in an image.
def getExposureId(self, dataRef)
def format(config, name=None, writeSourceLine=True, prefix="", verbose=False)
def getDebugFrame(debugDisplay, name)