LSST Applications  21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
propagateVisitFlags.py
Go to the documentation of this file.
1 #!/usr/bin/env python
2 #
3 # LSST Data Management System
4 # Copyright 2014-2015 LSST/AURA
5 #
6 # This product includes software developed by the
7 # LSST Project (http://www.lsst.org/).
8 #
9 # This program is free software: you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation, either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the LSST License Statement and
20 # the GNU General Public License along with this program. If not,
21 # see <http://www.lsstcorp.org/LegalNotices/>.
22 #
23 import numpy
24 from lsst.pex.config import Config, Field, DictField
25 from lsst.pipe.base import Task
26 import lsst.geom as geom
27 import lsst.afw.table as afwTable
28 import lsst.pex.exceptions as pexExceptions
29 
30 
32  """!Configuration for propagating flags to coadd"""
33  flags = DictField(keytype=str, itemtype=float,
34  default={"calib_psf_candidate": 0.2, "calib_psf_used": 0.2, "calib_psf_reserved": 0.2,
35  "calib_astrometry_used": 0.2, "calib_photometry_used": 0.2,
36  "calib_photometry_reserved": 0.2, },
37  doc=("Source catalog flags to propagate, with the threshold of relative occurrence "
38  "(valid range: [0-1], default is 0.2). Coadd object will have flag set if the "
39  "fraction of input visits in which it is flagged is greater than the threshold."))
40  matchRadius = Field(dtype=float, default=0.2, doc="Source matching radius (arcsec)")
41  ccdName = Field(dtype=str, default='ccd', doc="Name of ccd to give to butler")
42 
43 
44 
50 
52  r"""!Task to propagate flags from single-frame measurements to coadd measurements
53 
54 \anchor PropagateVisitFlagsTask_
55 
56 \brief Propagate flags from individual visit measurements to coadd measurements
57 
58 \section pipe_tasks_propagateVisitFlagsTask_Contents Contents
59 
60  - \ref pipe_tasks_propagateVisitFlagsTask_Description
61  - \ref pipe_tasks_propagateVisitFlagsTask_Initialization
62  - \ref pipe_tasks_propagateVisitFlagsTask_Config
63  - \ref pipe_tasks_propagateVisitFlagsTask_Use
64  - \ref pipe_tasks_propagateVisitFlagsTask_Example
65 
66 \section pipe_tasks_propagateVisitFlagsTask_Description Description
67 
68 \copybrief PropagateVisitFlagsTask
69 
70 We want to be able to set a flag for sources on the coadds using flags
71 that were determined from the individual visits. A common example is sources
72 that were used for PSF determination, since we do not do any PSF determination
73 on the coadd but use the individual visits. This requires matching the coadd
74 source catalog to each of the catalogs from the inputs (see
75 PropagateVisitFlagsConfig.matchRadius), and thresholding on the number of
76 times a source is flagged on the input catalog.
77 
78 An important consideration in this is that the flagging of sources in the
79 individual visits can be somewhat stochastic, e.g., the same stars may not
80 always be used for PSF determination because the field of view moves slightly
81 between visits, or the seeing changed. We there threshold on the relative
82 occurrence of the flag in the visits (see PropagateVisitFlagsConfig.flags).
83 Flagging a source that is always flagged in inputs corresponds to a threshold
84 of 1, while flagging a source that is flagged in any of the input corresponds
85 to a threshold of 0. But neither of these extrema are really useful in
86 practise.
87 
88 Setting the threshold too high means that sources that are not consistently
89 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
90 that threshold too low means that random sources which are falsely flagged in
91 the inputs will start to dominate. If in doubt, we suggest making this
92 threshold relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more
93 confidence in the quality of the flagging, the lower the threshold can be.
94 
95 The relative occurrence accounts for the edge of the field-of-view of the
96 camera, but does not include chip gaps, bad or saturated pixels, etc.
97 
98 \section pipe_tasks_propagateVisitFlagsTask_Initialization Initialization
99 
100 Beyond the usual Task initialization, PropagateVisitFlagsTask also requires
101 a schema for the catalog that is being constructed.
102 
103 \section pipe_tasks_propagateVisitFlagsTask_Config Configuration parameters
104 
105 See \ref PropagateVisitFlagsConfig
106 
107 \section pipe_tasks_propagateVisitFlagsTask_Use Use
108 
109 The 'run' method (described below) is the entry-point for operations. The
110 'getCcdInputs' staticmethod is provided as a convenience for retrieving the
111 'ccdInputs' (CCD inputs table) from an Exposure.
112 
113 \copydoc run
114 
115 \section pipe_tasks_propagateVisitFlagsTask_Example Example
116 
117 \code{.py}
118 # Requires:
119 # * butler: data butler, for retrieving the CCD catalogs
120 # * coaddCatalog: catalog of source measurements on the coadd (lsst.afw.table.SourceCatalog)
121 # * coaddExposure: coadd (lsst.afw.image.Exposure)
122 from lsst.pipe.tasks.propagateVisitFlags import PropagateVisitFlagsTask, PropagateVisitFlagsConfig
123 config = PropagateVisitFlagsConfig()
124 config.flags["calib_psf_used"] = 0.3 # Relative threshold for this flag
125 config.matchRadius = 0.5 # Matching radius in arcsec
126 task = PropagateVisitFlagsTask(coaddCatalog.schema, config=config)
127 ccdInputs = task.getCcdInputs(coaddExposure)
128 task.run(butler, coaddCatalog, ccdInputs, coaddExposure.getWcs())
129 \endcode
130 """
131  ConfigClass = PropagateVisitFlagsConfig
132 
133  def __init__(self, schema, **kwargs):
134  Task.__init__(self, **kwargs)
135  self.schemaschema = schema
136  self._keys_keys = dict((f, self.schemaschema.addField(f, type="Flag", doc="Propagated from visits")) for
137  f in self.config.flags)
138 
139  @staticmethod
140  def getCcdInputs(coaddExposure):
141  """!Convenience method to retrieve the CCD inputs table from a coadd exposure"""
142  return coaddExposure.getInfo().getCoaddInputs().ccds
143 
144  def run(self, butler, coaddSources, ccdInputs, coaddWcs, visitCatalogs=None, wcsUpdates=None):
145  """!Propagate flags from individual visit measurements to coadd
146 
147  This requires matching the coadd source catalog to each of the catalogs
148  from the inputs, and thresholding on the number of times a source is
149  flagged on the input catalog. The threshold is made on the relative
150  occurrence of the flag in each source. Flagging a source that is always
151  flagged in inputs corresponds to a threshold of 1, while flagging a
152  source that is flagged in any of the input corresponds to a threshold of
153  0. But neither of these extrema are really useful in practise.
154 
155  Setting the threshold too high means that sources that are not consistently
156  flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
157  that threshold too low means that random sources which are falsely flagged in
158  the inputs will start to dominate. If in doubt, we suggest making this threshold
159  relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more confidence in
160  the quality of the flagging, the lower the threshold can be.
161 
162  The relative occurrence accounts for the edge of the field-of-view of
163  the camera, but does not include chip gaps, bad or saturated pixels, etc.
164 
165  @param[in] butler Data butler, for retrieving the input source catalogs
166  @param[in,out] coaddSources Source catalog from the coadd
167  @param[in] ccdInputs Table of CCDs that contribute to the coadd
168  @param[in] coaddWcs Wcs for coadd
169  @param[in] visitCatalogs List of loaded source catalogs for each input ccd in
170  the coadd. If provided this is used instead of this
171  method loading in the catalogs itself
172  @param[in] wcsUpdates optional, If visitCatalogs is a list of ccd catalogs, this
173  should be a list of updated wcs to apply
174  """
175  if len(self.config.flags) == 0:
176  return
177 
178  flags = self._keys_keys.keys()
179  counts = dict((f, numpy.zeros(len(coaddSources), dtype=int)) for f in flags)
180  indices = numpy.array([s.getId() for s in coaddSources]) # Allowing for non-contiguous data
181  radius = self.config.matchRadius*geom.arcseconds
182 
183  def processCcd(ccdSources, wcsUpdate):
184  for sourceRecord in ccdSources:
185  sourceRecord.updateCoord(wcsUpdate)
186  for flag in flags:
187  # We assume that the flags will be relatively rare, so it is more efficient to match
188  # against a subset of the input catalog for each flag than it is to match once against
189  # the entire catalog. It would be best to have built a kd-tree on coaddSources and
190  # keep reusing that for the matching, but we don't have a suitable implementation.
191  mc = afwTable.MatchControl()
192  mc.findOnlyClosest = False
193  matches = afwTable.matchRaDec(coaddSources, ccdSources[ccdSources.get(flag)], radius, mc)
194  for m in matches:
195  index = (numpy.where(indices == m.first.getId()))[0][0]
196  counts[flag][index] += 1
197 
198  if visitCatalogs is not None:
199  if wcsUpdates is None:
200  raise pexExceptions.ValueError("If ccdInputs is a list of src catalogs, a list of wcs"
201  " updates for each catalog must be supplied in the "
202  "wcsUpdates parameter")
203  for i, ccdSource in enumerate(visitCatalogs):
204  processCcd(ccdSource, wcsUpdates[i])
205  else:
206  if ccdInputs is None:
207  raise pexExceptions.ValueError("The visitCatalogs and ccdInput parameters can't both be None")
208  visitKey = ccdInputs.schema.find("visit").key
209  ccdKey = ccdInputs.schema.find("ccd").key
210 
211  self.log.info("Propagating flags %s from inputs", flags)
212 
213  # Accumulate counts of flags being set
214  for ccdRecord in ccdInputs:
215  v = ccdRecord.get(visitKey)
216  c = ccdRecord.get(ccdKey)
217  dataId = {"visit": int(v), self.config.ccdName: int(c)}
218  ccdSources = butler.get("src", dataId=dataId, immediate=True)
219  processCcd(ccdSources, ccdRecord.getWcs())
220 
221  # Apply threshold
222  for f in flags:
223  key = self._keys_keys[f]
224  for s, num in zip(coaddSources, counts[f]):
225  numOverlaps = len(ccdInputs.subsetContaining(s.getCentroid(), coaddWcs, True))
226  s.setFlag(key, bool(num > numOverlaps*self.config.flags[f]))
227  self.log.info("Propagated %d sources with flag %s", sum(s.get(key) for s in coaddSources), f)
Pass parameters to algorithms that match list of sources.
Definition: Match.h:45
Task to propagate flags from single-frame measurements to coadd measurements.
def run(self, butler, coaddSources, ccdInputs, coaddWcs, visitCatalogs=None, wcsUpdates=None)
Propagate flags from individual visit measurements to coadd.
def getCcdInputs(coaddExposure)
Convenience method to retrieve the CCD inputs table from a coadd exposure.
std::vector< Match< typename Cat1::Record, typename Cat2::Record > > matchRaDec(Cat1 const &cat1, Cat2 const &cat2, lsst::geom::Angle radius, MatchControl const &mc=MatchControl())
Compute all tuples (s1,s2,d) where s1 belings to cat1, s2 belongs to cat2 and d, the distance between...
Definition: Match.cc:158