LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
deferredCharge.py
Go to the documentation of this file.
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ('DeferredChargeConfig', 'DeferredChargeTask', 'SerialTrap', 'DeferredChargeCalib')
23
24import numpy as np
25from astropy.table import Table
26
27from lsst.afw.cameraGeom import ReadoutCorner
28from lsst.pex.config import Config, Field
29from lsst.pipe.base import Task
30from .isrFunctions import gainContext
31from .calibType import IsrCalib
32
33import scipy.interpolate as interp
34
35
36class SerialTrap():
37 """Represents a serial register trap.
38
39 Parameters
40 ----------
41 size : `float`
42 Size of the charge trap, in electrons.
43 emission_time : `float`
44 Trap emission time constant, in inverse transfers.
45 pixel : `int`
46 Serial pixel location of the trap, including the prescan.
47 trap_type : `str`
48 Type of trap capture to use. Should be one of ``linear``,
49 ``logistic``, or ``spline``.
50 coeffs : `list` [`float`]
51 Coefficients for the capture process. Linear traps need one
52 coefficient, logistic traps need two, and spline based traps
53 need to have an even number of coefficients that can be split
54 into their spline locations and values.
55
56 Raises
57 ------
58 ValueError
59 Raised if the specified parameters are out of expected range.
60 """
61
62 def __init__(self, size, emission_time, pixel, trap_type, coeffs):
63 if size < 0.0:
64 raise ValueError('Trap size must be greater than or equal to 0.')
65 self.size = size
66
67 if emission_time <= 0.0:
68 raise ValueError('Emission time must be greater than 0.')
69 if np.isnan(emission_time):
70 raise ValueError('Emission time must be real-valued, not NaN')
71 self.emission_time = emission_time
72
73 if int(pixel) != pixel:
74 raise ValueError('Fraction value for pixel not allowed.')
75 self.pixel = int(pixel)
76
77 self.trap_type = trap_type
78 self.coeffs = coeffs
79
80 if self.trap_type not in ('linear', 'logistic', 'spline'):
81 raise ValueError('Unknown trap type: %s', self.trap_type)
82
83 if self.trap_type == 'spline':
84 centers, values = np.split(np.array(self.coeffs, dtype=np.float64), 2)
85 # Ensure all NaN values are stripped out
86 values = values[~np.isnan(centers)]
87 centers = centers[~np.isnan(centers)]
88 centers = centers[~np.isnan(values)]
89 values = values[~np.isnan(values)]
90 self.interp = interp.interp1d(centers, values)
91
92 self._trap_array = None
93 self._trapped_charge = None
94
95 def __eq__(self, other):
96 # A trap is equal to another trap if all of the initialization
97 # parameters are equal. All other properties are only filled
98 # during use, and are not persisted into the calibration.
99 if self.size != other.size:
100 return False
101 if self.emission_time != other.emission_time:
102 return False
103 if self.pixel != other.pixel:
104 return False
105 if self.trap_type != other.trap_type:
106 return False
107 if self.coeffs != other.coeffs:
108 return False
109 return True
110
111 @property
112 def trap_array(self):
113 return self._trap_array
114
115 @property
116 def trapped_charge(self):
117 return self._trapped_charge
118
119 def initialize(self, ny, nx, prescan_width):
120 """Initialize trapping arrays for simulated readout.
121
122 Parameters
123 ----------
124 ny : `int`
125 Number of rows to simulate.
126 nx : `int`
127 Number of columns to simulate.
128 prescan_width : `int`
129 Additional transfers due to prescan.
130
131 Raises
132 ------
133 ValueError
134 Raised if the trap falls outside of the image.
135 """
136 if self.pixel > nx+prescan_width:
137 raise ValueError('Trap location {0} must be less than {1}'.format(self.pixel,
138 nx+prescan_width))
139
140 self._trap_array = np.zeros((ny, nx+prescan_width))
141 self._trap_array[:, self.pixel] = self.size
142 self._trapped_charge = np.zeros((ny, nx+prescan_width))
143
144 def release_charge(self):
145 """Release charge through exponential decay.
146
147 Returns
148 -------
149 released_charge : `float`
150 Charge released.
151 """
152 released_charge = self._trapped_charge*(1-np.exp(-1./self.emission_time))
153 self._trapped_charge -= released_charge
154
155 return released_charge
156
157 def trap_charge(self, free_charge):
158 """Perform charge capture using a logistic function.
159
160 Parameters
161 ----------
162 free_charge : `float`
163 Charge available to be trapped.
164
165 Returns
166 -------
167 captured_charge : `float`
168 Amount of charge actually trapped.
169 """
170 captured_charge = (np.clip(self.capture(free_charge), self.trapped_chargetrapped_charge, self._trap_array)
172 self._trapped_charge += captured_charge
173
174 return captured_charge
175
176 def capture(self, pixel_signals):
177 """Trap capture function.
178
179 Parameters
180 ----------
181 pixel_signals : `list` [`float`]
182 Input pixel values.
183
184 Returns
185 -------
186 captured_charge : `list` [`float`]
187 Amount of charge captured from each pixel.
188
189 Raises
190 ------
191 RuntimeError
192 Raised if the trap type is invalid.
193 """
194 if self.trap_type == 'linear':
195 scaling = self.coeffs[0]
196 return np.minimum(self.size, pixel_signals*scaling)
197 elif self.trap_type == 'logistic':
198 f0, k = (self.coeffs[0], self.coeffs[1])
199 return self.size/(1.+np.exp(-k*(pixel_signals-f0)))
200 elif self.trap_type == 'spline':
201 return self.interp(pixel_signals)
202 else:
203 raise RuntimeError(f"Invalid trap capture type: {self.trap_type}.")
204
205
207 r"""Calibration containing deferred charge/CTI parameters.
208
209 Parameters
210 ----------
211 **kwargs :
212 Additional parameters to pass to parent constructor.
213
214 Notes
215 -----
216 The charge transfer inefficiency attributes stored are:
217
218 driftScale : `dict` [`str`, `float`]
219 A dictionary, keyed by amplifier name, of the local electronic
220 offset drift scale parameter, A_L in Snyder+2021.
221 decayTime : `dict` [`str`, `float`]
222 A dictionary, keyed by amplifier name, of the local electronic
223 offset decay time, \tau_L in Snyder+2021.
224 globalCti : `dict` [`str`, `float`]
225 A dictionary, keyed by amplifier name, of the mean global CTI
226 paramter, b in Snyder+2021.
227 serialTraps : `dict` [`str`, `lsst.ip.isr.SerialTrap`]
228 A dictionary, keyed by amplifier name, containing a single
229 serial trap for each amplifier.
230 """
231 _OBSTYPE = 'CTI'
232 _SCHEMA = 'Deferred Charge'
233 _VERSION = 1.0
234
235 def __init__(self, **kwargs):
236 self.driftScale = {}
237 self.decayTime = {}
238 self.globalCti = {}
239 self.serialTraps = {}
240
241 super().__init__(**kwargs)
242 self.requiredAttributesrequiredAttributesrequiredAttributes.update(['driftScale', 'decayTime', 'globalCti', 'serialTraps'])
243
244 def fromDetector(self, detector):
245 """Read metadata parameters from a detector.
246
247 Parameters
248 ----------
249 detector : `lsst.afw.cameraGeom.detector`
250 Input detector with parameters to use.
251
252 Returns
253 -------
254 calib : `lsst.ip.isr.Linearizer`
255 The calibration constructed from the detector.
256 """
257
258 pass
259
260 @classmethod
261 def fromDict(cls, dictionary):
262 """Construct a calibration from a dictionary of properties.
263
264 Parameters
265 ----------
266 dictionary : `dict`
267 Dictionary of properties.
268
269 Returns
270 -------
271 calib : `lsst.ip.isr.CalibType`
272 Constructed calibration.
273
274 Raises
275 ------
276 RuntimeError
277 Raised if the supplied dictionary is for a different
278 calibration.
279 """
280 calib = cls()
281
282 if calib._OBSTYPE != dictionary['metadata']['OBSTYPE']:
283 raise RuntimeError(f"Incorrect CTI supplied. Expected {calib._OBSTYPE}, "
284 f"found {dictionary['metadata']['OBSTYPE']}")
285
286 calib.setMetadata(dictionary['metadata'])
287
288 calib.driftScale = dictionary['driftScale']
289 calib.decayTime = dictionary['decayTime']
290 calib.globalCti = dictionary['globalCti']
291
292 for ampName in dictionary['serialTraps']:
293 ampTraps = dictionary['serialTraps'][ampName]
294 calib.serialTraps[ampName] = SerialTrap(ampTraps['size'], ampTraps['emissionTime'],
295 ampTraps['pixel'], ampTraps['trap_type'],
296 ampTraps['coeffs'])
297 calib.updateMetadata()
298 return calib
299
300 def toDict(self):
301 """Return a dictionary containing the calibration properties.
302 The dictionary should be able to be round-tripped through
303 ``fromDict``.
304
305 Returns
306 -------
307 dictionary : `dict`
308 Dictionary of properties.
309 """
310 self.updateMetadata()
311 outDict = {}
312 outDict['metadata'] = self.getMetadata()
313
314 outDict['driftScale'] = self.driftScale
315 outDict['decayTime'] = self.decayTime
316 outDict['globalCti'] = self.globalCti
317
318 outDict['serialTraps'] = {}
319 for ampName in self.serialTraps:
320 ampTrap = {'size': self.serialTraps[ampName].size,
321 'emissionTime': self.serialTraps[ampName].emission_time,
322 'pixel': self.serialTraps[ampName].pixel,
323 'trap_type': self.serialTraps[ampName].trap_type,
324 'coeffs': self.serialTraps[ampName].coeffs}
325 outDict['serialTraps'][ampName] = ampTrap
326
327 return outDict
328
329 @classmethod
330 def fromTable(cls, tableList):
331 """Construct calibration from a list of tables.
332
333 This method uses the ``fromDict`` method to create the
334 calibration, after constructing an appropriate dictionary from
335 the input tables.
336
337 Parameters
338 ----------
339 tableList : `list` [`lsst.afw.table.Table`]
340 List of tables to use to construct the crosstalk
341 calibration. Two tables are expected in this list, the
342 first containing the per-amplifier CTI parameters, and the
343 second containing the parameters for serial traps.
344
345 Returns
346 -------
348 The calibration defined in the tables.
349
350 Raises
351 ------
352 ValueError
353 Raised if the trap type or trap coefficients are not
354 defined properly.
355 """
356 ampTable = tableList[0]
357
358 inDict = {}
359 inDict['metadata'] = ampTable.meta
360
361 amps = ampTable['AMPLIFIER']
362 driftScale = ampTable['DRIFT_SCALE']
363 decayTime = ampTable['DECAY_TIME']
364 globalCti = ampTable['GLOBAL_CTI']
365
366 inDict['driftScale'] = {amp: value for amp, value in zip(amps, driftScale)}
367 inDict['decayTime'] = {amp: value for amp, value in zip(amps, decayTime)}
368 inDict['globalCti'] = {amp: value for amp, value in zip(amps, globalCti)}
369
370 inDict['serialTraps'] = {}
371 trapTable = tableList[1]
372
373 amps = trapTable['AMPLIFIER']
374 sizes = trapTable['SIZE']
375 emissionTimes = trapTable['EMISSION_TIME']
376 pixels = trapTable['PIXEL']
377 trap_type = trapTable['TYPE']
378 coeffs = trapTable['COEFFS']
379
380 for index, amp in enumerate(amps):
381 ampTrap = {}
382 ampTrap['size'] = sizes[index]
383 ampTrap['emissionTime'] = emissionTimes[index]
384 ampTrap['pixel'] = pixels[index]
385 ampTrap['trap_type'] = trap_type[index]
386
387 # Unpad any trailing NaN values: find the continuous array
388 # of NaNs at the end of the coefficients, and remove them.
389 inCoeffs = coeffs[index]
390 breakIndex = 1
391 nanValues = np.where(np.isnan(inCoeffs))[0]
392 if nanValues is not None:
393 coeffLength = len(inCoeffs)
394 while breakIndex < coeffLength:
395 if coeffLength - breakIndex in nanValues:
396 breakIndex += 1
397 else:
398 break
399 breakIndex -= 1 # Remove the fixed offset.
400 if breakIndex != 0:
401 outCoeffs = inCoeffs[0: coeffLength - breakIndex]
402 else:
403 outCoeffs = inCoeffs
404 ampTrap['coeffs'] = outCoeffs.tolist()
405
406 if ampTrap['trap_type'] == 'linear':
407 if len(ampTrap['coeffs']) < 1:
408 raise ValueError("CTI Amplifier %s coefficients for trap has illegal length %d.",
409 amp, len(ampTrap['coeffs']))
410 elif ampTrap['trap_type'] == 'logistic':
411 if len(ampTrap['coeffs']) < 2:
412 raise ValueError("CTI Amplifier %s coefficients for trap has illegal length %d.",
413 amp, len(ampTrap['coeffs']))
414 elif ampTrap['trap_type'] == 'spline':
415 if len(ampTrap['coeffs']) % 2 != 0:
416 raise ValueError("CTI Amplifier %s coefficients for trap has illegal length %d.",
417 amp, len(ampTrap['coeffs']))
418 else:
419 raise ValueError('Unknown trap type: %s', ampTrap['trap_type'])
420
421 inDict['serialTraps'][amp] = ampTrap
422
423 return cls.fromDictfromDict(inDict)
424
425 def toTable(self):
426 """Construct a list of tables containing the information in this
427 calibration.
428
429 The list of tables should create an identical calibration
430 after being passed to this class's fromTable method.
431
432 Returns
433 -------
434 tableList : `list` [`lsst.afw.table.Table`]
435 List of tables containing the crosstalk calibration
436 information. Two tables are generated for this list, the
437 first containing the per-amplifier CTI parameters, and the
438 second containing the parameters for serial traps.
439 """
440 tableList = []
441 self.updateMetadata()
442
443 ampList = []
444 driftScale = []
445 decayTime = []
446 globalCti = []
447
448 for amp in self.driftScale.keys():
449 ampList.append(amp)
450 driftScale.append(self.driftScale[amp])
451 decayTime.append(self.decayTime[amp])
452 globalCti.append(self.globalCti[amp])
453
454 ampTable = Table({'AMPLIFIER': ampList,
455 'DRIFT_SCALE': driftScale,
456 'DECAY_TIME': decayTime,
457 'GLOBAL_CTI': globalCti,
458 })
459
460 ampTable.meta = self.getMetadata().toDict()
461 tableList.append(ampTable)
462
463 ampList = []
464 sizeList = []
465 timeList = []
466 pixelList = []
467 typeList = []
468 coeffList = []
469
470 # Get maximum coeff length
471 maxCoeffLength = 0
472 for trap in self.serialTraps.values():
473 maxCoeffLength = np.maximum(maxCoeffLength, len(trap.coeffs))
474
475 # Pack and pad the end of the coefficients with NaN values.
476 for amp, trap in self.serialTraps.items():
477 ampList.append(amp)
478 sizeList.append(trap.size)
479 timeList.append(trap.emission_time)
480 pixelList.append(trap.pixel)
481 typeList.append(trap.trap_type)
482
483 coeffs = trap.coeffs
484 if len(coeffs) != maxCoeffLength:
485 coeffs = np.pad(coeffs, (0, maxCoeffLength - len(coeffs)),
486 constant_values=np.nan).tolist()
487 coeffList.append(coeffs)
488
489 trapTable = Table({'AMPLIFIER': ampList,
490 'SIZE': sizeList,
491 'EMISSION_TIME': timeList,
492 'PIXEL': pixelList,
493 'TYPE': typeList,
494 'COEFFS': coeffList})
495
496 tableList.append(trapTable)
497
498 return tableList
499
500
502 """Settings for deferred charge correction.
503 """
504 nPixelOffsetCorrection = Field(
505 dtype=int,
506 doc="Number of prior pixels to use for local offset correction.",
507 default=15,
508 )
509 nPixelTrapCorrection = Field(
510 dtype=int,
511 doc="Number of prior pixels to use for trap correction.",
512 default=6,
513 )
514 useGains = Field(
515 dtype=bool,
516 doc="If true, scale by the gain.",
517 default=False,
518 )
519 zeroUnusedPixels = Field(
520 dtype=bool,
521 doc="If true, set serial prescan and parallel overscan to zero before correction.",
522 default=False,
523 )
524
525
527 """Task to correct an exposure for charge transfer inefficiency.
528
529 This uses the methods described by Snyder et al. 2021, Journal of
530 Astronimcal Telescopes, Instruments, and Systems, 7,
531 048002. doi:10.1117/1.JATIS.7.4.048002 (Snyder+21).
532 """
533 ConfigClass = DeferredChargeConfig
534 _DefaultName = 'isrDeferredCharge'
535
536 def run(self, exposure, ctiCalib, gains=None):
537 """Correct deferred charge/CTI issues.
538
539 Parameters
540 ----------
541 exposure : `lsst.afw.image.Exposure`
542 Exposure to correct the deferred charge on.
544 Calibration object containing the charge transfer
545 inefficiency model.
546 gains : `dict` [`str`, `float`]
547 A dictionary, keyed by amplifier name, of the gains to
548 use. If gains is None, the nominal gains in the amplifier
549 object are used.
550
551 Returns
552 -------
553 exposure : `lsst.afw.image.Exposure`
554 The corrected exposure.
555 """
556 image = exposure.getMaskedImage().image
557 detector = exposure.getDetector()
558
559 # If gains were supplied, they should be used. If useGains is
560 # true, but no external gains were supplied, use the nominal
561 # gains listed in the detector. Finally, if useGains is
562 # false, fake a dictionary of unit gains for ``gainContext``.
563 if self.config.useGains:
564 if gains is None:
565 gains = {amp.getName(): amp.getGain() for amp in detector.getAmplifiers()}
566
567 with gainContext(exposure, image, self.config.useGains, gains):
568 for amp in detector.getAmplifiers():
569 ampName = amp.getName()
570
571 ampImage = image[amp.getRawBBox()]
572 if self.config.zeroUnusedPixels:
573 # We don't apply overscan subtraction, so zero these
574 # out for now.
575 ampImage[amp.getRawParallelOverscanBBox()].array[:, :] = 0.0
576 ampImage[amp.getRawSerialPrescanBBox()].array[:, :] = 0.0
577
578 # The algorithm expects that the readout corner is in
579 # the lower left corner. Flip it to be so:
580
581 ampData = self.flipData(ampImage.array, amp)
582
583 if ctiCalib.driftScale[ampName] > 0.0:
584 correctedAmpData = self.local_offset_inverse(ampData,
585 ctiCalib.driftScale[ampName],
586 ctiCalib.decayTime[ampName],
587 self.config.nPixelOffsetCorrection)
588 else:
589 correctedAmpData = ampData.copy()
590
591 correctedAmpData = self.local_trap_inverse(correctedAmpData,
592 ctiCalib.serialTraps[ampName],
593 ctiCalib.globalCti[ampName],
594 self.config.nPixelTrapCorrection)
595
596 # Undo flips here. The method is symmetric.
597 correctedAmpData = self.flipData(correctedAmpData, amp)
598 image[amp.getRawBBox()].array[:, :] = correctedAmpData[:, :]
599
600 return exposure
601
602 @staticmethod
603 def flipData(ampData, amp):
604 """Flip data array such that readout corner is at lower-left.
605
606 Parameters
607 ----------
608 ampData : `numpy.ndarray`, (nx, ny)
609 Image data to flip.
611 Amplifier to get readout corner information.
612
613 Returns
614 -------
615 ampData : `numpy.ndarray`, (nx, ny)
616 Flipped image data.
617 """
618 X_FLIP = {ReadoutCorner.LL: False,
619 ReadoutCorner.LR: True,
620 ReadoutCorner.UL: False,
621 ReadoutCorner.UR: True}
622 Y_FLIP = {ReadoutCorner.LL: False,
623 ReadoutCorner.LR: False,
624 ReadoutCorner.UL: True,
625 ReadoutCorner.UR: True}
626
627 if X_FLIP[amp.getReadoutCorner()]:
628 ampData = np.fliplr(ampData)
629 if Y_FLIP[amp.getReadoutCorner()]:
630 ampData = np.flipud(ampData)
631
632 return ampData
633
634 @staticmethod
635 def local_offset_inverse(inputArr, drift_scale, decay_time, num_previous_pixels=15):
636 r"""Remove CTI effects from local offsets.
637
638 This implements equation 10 of Snyder+21. For an image with
639 CTI, s'(m, n), the correction factor is equal to the maximum
640 value of the set of:
641
642 .. code-block::
643
644 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
645
646 Parameters
647 ----------
648 inputArr : `numpy.ndarray`, (nx, ny)
649 Input image data to correct.
650 drift_scale : `float`
651 Drift scale (Snyder+21 A_L value) to use in correction.
652 decay_time : `float`
653 Decay time (Snyder+21 \tau_L) of the correction.
654 num_previous_pixels : `int`, optional
655 Number of previous pixels to use for correction. As the
656 CTI has an exponential decay, this essentially truncates
657 the correction where that decay scales the input charge to
658 near zero.
659
660 Returns
661 -------
662 outputArr : `numpy.ndarray`, (nx, ny)
663 Corrected image data.
664 """
665 r = np.exp(-1/decay_time)
666 Ny, Nx = inputArr.shape
667
668 # j = 0 term:
669 offset = np.zeros((num_previous_pixels, Ny, Nx))
670 offset[0, :, :] = drift_scale*np.maximum(0, inputArr)
671
672 # j = 1..jmax terms:
673 for n in range(1, num_previous_pixels):
674 offset[n, :, n:] = drift_scale*np.maximum(0, inputArr[:, :-n])*(r**n)
675
676 Linv = np.amax(offset, axis=0)
677 outputArr = inputArr - Linv
678
679 return outputArr
680
681 @staticmethod
682 def local_trap_inverse(inputArr, trap, global_cti=0.0, num_previous_pixels=6):
683 r"""Apply localized trapping inverse operator to pixel signals.
684
685 This implements equation 13 of Snyder+21. For an image with
686 CTI, s'(m, n), the correction factor is equal to the maximum
687 value of the set of:
688
689 .. code-block::
690
691 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
692
693 Parameters
694 ----------
695 inputArr : `numpy.ndarray`, (nx, ny)
696 Input image data to correct.
698 Serial trap describing the capture and release of charge.
699 global_cti: `float`
700 Mean charge transfer inefficiency, b from Snyder+21.
701 num_previous_pixels : `int`, optional
702 Number of previous pixels to use for correction.
703
704 Returns
705 -------
706 outputArr : `numpy.ndarray`, (nx, ny)
707 Corrected image data.
708
709 """
710 Ny, Nx = inputArr.shape
711 a = 1 - global_cti
712 r = np.exp(-1/trap.emission_time)
713
714 # Estimate trap occupancies during readout
715 trap_occupancy = np.zeros((num_previous_pixels, Ny, Nx))
716 for n in range(num_previous_pixels):
717 trap_occupancy[n, :, n+1:] = trap.capture(np.maximum(0, inputArr))[:, :-(n+1)]*(r**n)
718 trap_occupancy = np.amax(trap_occupancy, axis=0)
719
720 # Estimate captured charge
721 C = trap.capture(np.maximum(0, inputArr)) - trap_occupancy*r
722 C[C < 0] = 0.
723
724 # Estimate released charge
725 R = np.zeros(inputArr.shape)
726 R[:, 1:] = trap_occupancy[:, 1:]*(1-r)
727 T = R - C
728
729 outputArr = inputArr - a*T
730
731 return outputArr
std::vector< SchemaItem< Flag > > * items
Geometry and electronic information about raw amplifier images.
Definition Amplifier.h:86
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition Exposure.h:72
fromDict(cls, dictionary, **kwargs)
Definition calibType.py:565
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
Definition calibType.py:197
local_trap_inverse(inputArr, trap, global_cti=0.0, num_previous_pixels=6)
local_offset_inverse(inputArr, drift_scale, decay_time, num_previous_pixels=15)
__init__(self, size, emission_time, pixel, trap_type, coeffs)
initialize(self, ny, nx, prescan_width)