22__all__ = [
"init_fromDict",
"Functor",
"CompositeFunctor",
"mag_aware_eval",
23 "CustomFunctor",
"Column",
"Index",
"CoordColumn",
"RAColumn",
24 "DecColumn",
"HtmIndex20",
"fluxName",
"fluxErrName",
"Mag",
25 "MagErr",
"MagDiff",
"Color",
"DeconvolvedMoments",
"SdssTraceSize",
26 "PsfSdssTraceSizeDiff",
"HsmTraceSize",
"PsfHsmTraceSizeDiff",
27 "HsmFwhm",
"E1",
"E2",
"RadiusFromQuadrupole",
"LocalWcs",
28 "ComputePixelScale",
"ConvertPixelToArcseconds",
29 "ConvertPixelSqToArcsecondsSq",
30 "ConvertDetectorAngleToPositionAngle",
31 "ReferenceBand",
"Photometry",
32 "NanoJansky",
"NanoJanskyErr",
"LocalPhotometry",
"LocalNanojansky",
33 "LocalNanojanskyErr",
"LocalDipoleMeanFlux",
34 "LocalDipoleMeanFluxErr",
"LocalDipoleDiffFlux",
35 "LocalDipoleDiffFluxErr",
"Ebv",
43from contextlib
import redirect_stdout
44from itertools
import product
46import astropy.units
as u
52from astropy.coordinates
import SkyCoord
53from lsst.daf.butler
import DeferredDatasetHandle
56from lsst.utils.introspection
import get_full_type_name
60 typeKey='functor', name=None):
61 """Initialize an object defined in a dictionary.
63 The object needs to be importable as f'{basePath}.{initDict[typeKey]}'.
64 The positional and keyword arguments (if any) are contained in "args" and
65 "kwargs" entries in the dictionary, respectively.
66 This is used in `~lsst.pipe.tasks.functors.CompositeFunctor.from_yaml` to
67 initialize a composite functor from a specification in a YAML file.
72 Dictionary describing object's initialization.
73 Must contain an entry keyed by ``typeKey`` that is the name of the
74 object, relative to ``basePath``.
76 Path relative to module in which ``initDict[typeKey]`` is defined.
78 Key of ``initDict`` that is the name of the object (relative to
81 initDict = initDict.copy()
83 pythonType = doImport(f
'{basePath}.{initDict.pop(typeKey)}')
85 if 'args' in initDict:
86 args = initDict.pop(
'args')
87 if isinstance(args, str):
90 element = pythonType(*args, **initDict)
91 except Exception
as e:
92 message = f
'Error in constructing functor "{name}" of type {pythonType.__name__} with args: {args}'
93 raise type(e)(message, e.args)
98 """Define and execute a calculation on a DataFrame or Handle holding a
101 The `__call__` method accepts either a `~pandas.DataFrame` object or a
102 `~lsst.daf.butler.DeferredDatasetHandle` or
103 `~lsst.pipe.base.InMemoryDatasetHandle`, and returns the
104 result of the calculation as a single column.
105 Each functor defines what columns are needed for the calculation, and only
106 these columns are read from the dataset handle.
108 The action of `__call__` consists of two steps: first, loading the
109 necessary columns from disk into memory as a `~pandas.DataFrame` object;
110 and second, performing the computation on this DataFrame and returning the
113 To define a new `Functor`, a subclass must define a `_func` method,
114 that takes a `~pandas.DataFrame` and returns result in a `~pandas.Series`.
115 In addition, it must define the following attributes:
117 * `_columns`: The columns necessary to perform the calculation
118 * `name`: A name appropriate for a figure axis label
119 * `shortname`: A name appropriate for use as a dictionary key
121 On initialization, a `Functor` should declare what band (``filt`` kwarg)
122 and dataset (e.g. ``'ref'``, ``'meas'``, ``'forced_src'``) it is intended
124 This enables the `_get_data` method to extract the proper columns from the
126 If not specified, the dataset will fall back on the `_defaultDataset`
128 If band is not specified and ``dataset`` is anything other than ``'ref'``,
129 then an error will be raised when trying to perform the calculation.
131 Originally, `Functor` was set up to expect datasets formatted like the
132 ``deepCoadd_obj`` dataset; that is, a DataFrame with a multi-level column
133 index, with the levels of the column index being ``band``, ``dataset``, and
135 It has since been generalized to apply to DataFrames without multi-level
136 indices and multi-level indices with just ``dataset`` and ``column``
138 In addition, the `_get_data` method that reads the columns from the
139 underlying data will return a DataFrame with column index levels defined by
140 the `_dfLevels` attribute; by default, this is ``column``.
142 The `_dfLevels` attributes should generally not need to be changed, unless
143 `_func` needs columns from multiple filters or datasets to do the
145 An example of this is the `~lsst.pipe.tasks.functors.Color` functor, for
146 which `_dfLevels = ('band', 'column')`, and `_func` expects the DataFrame
147 it gets to have those levels in the column index.
152 Band upon which to do the calculation.
155 Dataset upon which to do the calculation (e.g., 'ref', 'meas',
159 _defaultDataset =
'ref'
160 _dfLevels = (
'column',)
161 _defaultNoDup =
False
163 def __init__(self, filt=None, dataset=None, noDup=None):
167 self.
log = logging.getLogger(type(self).__name__)
171 """Do not explode by band if used on object table."""
172 if self.
_noDup is not None:
179 """Columns required to perform calculation."""
180 if not hasattr(self,
'_columns'):
181 raise NotImplementedError(
'Must define columns property or _columns attribute')
185 """Gets the names of the column index levels.
187 This should only be called in the context of a multilevel table.
192 The data to be read, can be a
193 `~lsst.daf.butler.DeferredDatasetHandle` or
194 `~lsst.pipe.base.InMemoryDatasetHandle`.
195 columnIndex (optional): pandas `~pandas.Index` object
196 If not passed, then it is read from the
197 `~lsst.daf.butler.DeferredDatasetHandle`
198 for `~lsst.pipe.base.InMemoryDatasetHandle`.
200 if columnIndex
is None:
201 columnIndex = data.get(component=
"columns")
202 return columnIndex.names
205 """Gets the content of each of the column levels for a multilevel
208 if columnIndex
is None:
209 columnIndex = data.get(component=
"columns")
211 columnLevels = columnIndex.names
213 level: list(np.unique(np.array([c
for c
in columnIndex])[:, i]))
214 for i, level
in enumerate(columnLevels)
216 return columnLevelNames
219 """Converts dictionary column specficiation to a list of columns."""
223 for i, lev
in enumerate(columnLevels):
225 if isinstance(colDict[lev], str):
226 new_colDict[lev] = [colDict[lev]]
228 new_colDict[lev] = colDict[lev]
230 new_colDict[lev] = columnIndex.levels[i]
232 levelCols = [new_colDict[lev]
for lev
in columnLevels]
233 cols = list(product(*levelCols))
234 colsAvailable = [col
for col
in cols
if col
in columnIndex]
238 """Returns columns needed by functor from multilevel dataset.
240 To access tables with multilevel column structure, the
241 `~lsst.daf.butler.DeferredDatasetHandle` or
242 `~lsst.pipe.base.InMemoryDatasetHandle` needs to be passed
243 either a list of tuples or a dictionary.
248 The data as either `~lsst.daf.butler.DeferredDatasetHandle`, or
249 `~lsst.pipe.base.InMemoryDatasetHandle`.
250 columnIndex (optional): pandas `~pandas.Index` object
251 Either passed or read in from
252 `~lsst.daf.butler.DeferredDatasetHandle`.
253 `returnTuple` : `bool`
254 If true, then return a list of tuples rather than the column
255 dictionary specification.
256 This is set to `True` by `CompositeFunctor` in order to be able to
257 combine columns from the various component functors.
260 if not isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
261 raise RuntimeError(f
"Unexpected data type. Got {get_full_type_name(data)}.")
263 if columnIndex
is None:
264 columnIndex = data.get(component=
"columns")
270 columnDict = {
'column': self.
columns,
272 if self.
filt is None:
274 if "band" in columnLevels:
276 columnDict[
"band"] = columnLevelNames[
"band"][0]
278 raise ValueError(f
"'filt' not set for functor {self.name}"
279 f
"(dataset {self.dataset}) "
281 "contains multiple filters in column index. "
282 "Set 'filt' or set 'dataset' to 'ref'.")
284 columnDict[
'band'] = self.
filt
287 return self.
_colsFromDict(columnDict, columnIndex=columnIndex)
292 raise NotImplementedError(
'Must define calculation on DataFrame')
295 """Return columnIndex."""
297 if isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
298 return data.get(component=
"columns")
303 """Retrieve DataFrame necessary for calculation.
305 The data argument can be a `~pandas.DataFrame`, a
306 `~lsst.daf.butler.DeferredDatasetHandle`, or
307 an `~lsst.pipe.base.InMemoryDatasetHandle`.
309 Returns a DataFrame upon which `self._func` can act.
313 if isinstance(data, pd.DataFrame):
314 _data = InMemoryDatasetHandle(data, storageClass=
"DataFrame")
315 elif isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
318 raise RuntimeError(f
"Unexpected type provided for data. Got {get_full_type_name(data)}.")
323 is_multiLevel = isinstance(columnIndex, pd.MultiIndex)
332 df = _data.get(parameters={
"columns": columns})
341 levelsToDrop = [n
for n
in df.columns.names
if n
not in self.
_dfLevels]
342 df.columns = df.columns.droplevel(levelsToDrop)
351 vals = self.
_func(df)
352 except Exception
as e:
353 self.
log.error(
"Exception in %s call: %s: %s", self.
namename, type(e).__name__, e)
361 """Computes difference between functor called on two different
362 DataFrame/Handle objects.
364 return self(data1, **kwargs) - self(data2, **kwargs)
367 return pd.Series(np.full(len(df), np.nan), index=df.index)
371 """Full name of functor (suitable for figure labels)."""
372 return NotImplementedError
376 """Short name of functor (suitable for column name/dict key)."""
381 """Perform multiple calculations at once on a catalog.
383 The role of a `CompositeFunctor` is to group together computations from
385 Instead of returning `~pandas.Series` a `CompositeFunctor` returns a
386 `~pandas.DataFrame`, with the column names being the keys of ``funcDict``.
388 The `columns` attribute of a `CompositeFunctor` is the union of all columns
389 in all the component functors.
391 A `CompositeFunctor` does not use a `_func` method itself; rather, when a
392 `CompositeFunctor` is called, all its columns are loaded at once, and the
393 resulting DataFrame is passed to the `_func` method of each component
395 This has the advantage of only doing I/O (reading from parquet file) once,
396 and works because each individual `_func` method of each component functor
397 does not care if there are *extra* columns in the DataFrame being passed;
398 only that it must contain *at least* the `columns` it expects.
400 An important and useful class method is `from_yaml`, which takes as an
401 argument the path to a YAML file specifying a collection of functors.
405 funcs : `dict` or `list`
406 Dictionary or list of functors.
407 If a list, then it will be converted into a dictonary according to the
408 `.shortname` attribute of each functor.
411 name =
"CompositeFunctor"
415 if type(funcs)
is dict:
418 self.
funcDict = {f.shortname: f
for f
in funcs}
436 """Update the functor with new functors."""
437 if isinstance(new, dict):
439 elif isinstance(new, CompositeFunctor):
442 raise TypeError(
'Can only update with dictionary or CompositeFunctor.')
450 return list(set([x
for y
in [f.columns
for f
in self.
funcDict.values()]
for x
in y]))
460 f.multilevelColumns(data, returnTuple=
True, **kwargs)
for f
in self.
funcDict.values()
468 """Apply the functor to the data table.
473 The data represented as `~lsst.daf.butler.DeferredDatasetHandle`,
474 `~lsst.pipe.base.InMemoryDatasetHandle`, or `~pandas.DataFrame`.
475 The table or a pointer to a table on disk from which columns can
478 if isinstance(data, pd.DataFrame):
479 _data = InMemoryDatasetHandle(data, storageClass=
"DataFrame")
480 elif isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
483 raise RuntimeError(f
"Unexpected type provided for data. Got {get_full_type_name(data)}.")
487 if isinstance(columnIndex, pd.MultiIndex):
489 df = _data.get(parameters={
"columns": columns})
494 subdf = f._setLevels(
495 df[f.multilevelColumns(_data, returnTuple=
True, columnIndex=columnIndex)]
497 valDict[k] = f._func(subdf)
498 except Exception
as e:
500 "Exception in %s (funcs: %s) call: %s",
506 valDict[k] = f.fail(subdf)
516 for name, colVal
in valDict.items():
517 if len(colVal.shape) != 1:
518 raise RuntimeError(
"Transformed column '%s' is not the shape of a column. "
519 "It is shaped %s and type %s." % (name, colVal.shape, type(colVal)))
522 valDf = pd.concat(valDict, axis=1)
524 print([(k, type(v))
for k, v
in valDict.items()])
527 if kwargs.get(
'dropna',
False):
528 valDf = valDf.dropna(how=
'any')
534 if renameRules
is None:
536 for old, new
in renameRules:
537 if col.startswith(old):
538 col = col.replace(old, new)
544 filename = os.path.expandvars(filename)
545 with open(filename)
as f:
546 translationDefinition = yaml.safe_load(f)
548 return cls.
from_yaml(translationDefinition, **kwargs)
553 for func, val
in translationDefinition[
'funcs'].
items():
556 if 'flag_rename_rules' in translationDefinition:
557 renameRules = translationDefinition[
'flag_rename_rules']
561 if 'calexpFlags' in translationDefinition:
562 for flag
in translationDefinition[
'calexpFlags']:
563 funcs[cls.
renameCol(flag, renameRules)] =
Column(flag, dataset=
'calexp')
565 if 'refFlags' in translationDefinition:
566 for flag
in translationDefinition[
'refFlags']:
569 if 'forcedFlags' in translationDefinition:
570 for flag
in translationDefinition[
'forcedFlags']:
571 funcs[cls.
renameCol(flag, renameRules)] =
Column(flag, dataset=
'forced_src')
573 if 'flags' in translationDefinition:
574 for flag
in translationDefinition[
'flags']:
577 return cls(funcs, **kwargs)
581 """Evaluate an expression on a DataFrame, knowing what the 'mag' function
584 Builds on `pandas.DataFrame.eval`, which parses and executes math on
589 df : ~pandas.DataFrame
590 DataFrame on which to evaluate expression.
596 expr_new = re.sub(
r'mag\((\w+)\)',
r'-2.5*log(\g<1>)/log(10)', expr)
597 val = df.eval(expr_new)
598 except Exception
as e:
599 log.error(
"Exception in mag_aware_eval: %s: %s", type(e).__name__, e)
600 expr_new = re.sub(
r'mag\((\w+)\)',
r'-2.5*log(\g<1>_instFlux)/log(10)', expr)
601 val = df.eval(expr_new)
606 """Arbitrary computation on a catalog.
608 Column names (and thus the columns to be loaded from catalog) are found by
609 finding all words and trying to ignore all "math-y" words.
614 Expression to evaluate, to be parsed and executed by
615 `~lsst.pipe.tasks.functors.mag_aware_eval`.
617 _ignore_words = (
'mag',
'sin',
'cos',
'exp',
'log',
'sqrt')
629 flux_cols = re.findall(
r'mag\(\s*(\w+)\s*\)', self.
expr)
631 cols = [c
for c
in re.findall(
r'[a-zA-Z_]+', self.
expr)
if c
not in self.
_ignore_words]
634 if not re.search(
'_instFlux$', c):
635 cols.append(f
'{c}_instFlux')
640 return list(set([c
for c
in cols
if c
not in not_a_col]))
647 """Get column with a specified name."""
666 """Return the value of the index for each object."""
668 columns = [
'coord_ra']
669 _defaultDataset =
'ref'
673 return pd.Series(df.index, index=df.index)
677 """Base class for coordinate column, in degrees."""
686 output = df[self.
col] * 180 / np.pi
if self.
_radians else df[self.
col]
691 """Right Ascension, in degrees."""
696 super().
__init__(
'coord_ra', **kwargs)
699 return super().
__call__(catalog, **kwargs)
703 """Declination, in degrees."""
708 super().
__init__(
'coord_dec', **kwargs)
711 return super().
__call__(catalog, **kwargs)
715 """Uncertainty in Right Ascension, in degrees."""
720 super().
__init__(
'coord_raErr', **kwargs)
724 """Uncertainty in declination, in degrees."""
729 super().
__init__(
'coord_decErr', **kwargs)
733 """Coordinate covariance column, in degrees."""
739 super().
__init__(
'coord_ra_dec_Cov', **kwargs)
744 output = df[self.
col]*(180/np.pi)**2
if self.
_radians else df[self.
col]
749 """Compute the level 20 HtmIndex for the catalog.
753 This functor was implemented to satisfy requirements of old APDB interface
754 which required the ``pixelId`` column in DiaObject with HTM20 index.
755 The APDB interface had migrated to not need that information, but we keep
756 this class in case it may be useful for something else.
771 def computePixel(row):
780 return self.
pixelator.index(sphPoint.getVector())
782 return df.apply(computePixel, axis=1, result_type=
'reduce').astype(
'int64')
786 """Append _instFlux to the column name if it doesn't have it already."""
787 if not col.endswith(
'_instFlux'):
793 """Append _instFluxErr to the column name if it doesn't have it already."""
794 if not col.endswith(
'_instFluxErr'):
795 col +=
'_instFluxErr'
800 """Compute calibrated magnitude.
802 Returns the flux at mag=0.
803 The default ``fluxMag0`` is 63095734448.0194, which is default for HSC.
804 TO DO: This default should be made configurable in DM-21955.
806 This calculation hides warnings about invalid values and dividing by zero.
808 As with all functors, a ``dataset`` and ``filt`` kwarg should be provided
810 Unlike the default `Functor`, however, the default dataset for a `Mag` is
811 ``'meas'``, rather than ``'ref'``.
816 Name of flux column from which to compute magnitude.
817 Can be parseable by the `~lsst.pipe.tasks.functors.fluxName` function;
818 that is, you can pass ``'modelfit_CModel'`` instead of
819 ``'modelfit_CModel_instFlux'``, and it will understand.
821 _defaultDataset =
'meas'
835 with warnings.catch_warnings():
836 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
837 warnings.filterwarnings(
'ignore',
r'divide by zero')
842 return f
'mag_{self.col}'
846 """Compute calibrated magnitude uncertainty.
851 Name of the flux column.
864 with warnings.catch_warnings():
865 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
866 warnings.filterwarnings(
'ignore',
r'divide by zero')
868 x = df[fluxErrCol] / df[fluxCol]
870 magErr = (2.5 / np.log(10.)) * np.sqrt(x*x + y*y)
875 return super().name +
'_err'
879 """Functor to calculate magnitude difference."""
880 _defaultDataset =
'meas'
892 with warnings.catch_warnings():
893 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
894 warnings.filterwarnings(
'ignore',
r'divide by zero')
895 return -2.5*np.log10(df[self.
col1]/df[self.
col2])
899 return f
'(mag_{self.col1} - mag_{self.col2})'
903 return f
'magDiff_{self.col1}_{self.col2}'
907 """Compute the color between two filters.
909 Computes color by initializing two different `Mag` functors based on the
910 ``col`` and filters provided, and then returning the difference.
912 This is enabled by the `_func` method expecting a DataFrame with a
913 multilevel column index, with both ``'band'`` and ``'column'``, instead of
914 just ``'column'``, which is the `Functor` default.
915 This is controlled by the `_dfLevels` attribute.
917 Also of note, the default dataset for `Color` is ``forced_src'``, whereas
918 for `Mag` it is ``'meas'``.
923 Name of the flux column from which to compute; same as would be passed
924 to `~lsst.pipe.tasks.functors.Mag`.
927 Filters from which to compute magnitude difference.
928 Color computed is ``Mag(filt2) - Mag(filt1)``.
930 _defaultDataset =
'forced_src'
931 _dfLevels = (
'band',
'column')
937 raise RuntimeError(
"Cannot compute Color for %s: %s - %s " % (col, filt2, filt1))
955 mag2 = self.mag2.
_func(df[self.filt2])
956 mag1 = self.mag1.
_func(df[self.filt1])
961 return [self.
mag1.col, self.
mag2.col]
968 return f
'{self.filt2} - {self.filt1} ({self.col})'
972 return f
"{self.col}_{self.filt2.replace('-', '')}m{self.filt1.replace('-', '')}"
976 """This functor subtracts the trace of the PSF second moments from the
977 trace of the second moments of the source.
979 If the HsmShapeAlgorithm measurement is valid, then these will be used for
981 Otherwise, the SdssShapeAlgorithm measurements will be used.
983 name =
'Deconvolved Moments'
984 shortname =
'deconvolvedMoments'
985 _columns = (
"ext_shapeHSM_HsmSourceMoments_xx",
986 "ext_shapeHSM_HsmSourceMoments_yy",
987 "base_SdssShape_xx",
"base_SdssShape_yy",
988 "ext_shapeHSM_HsmPsfMoments_xx",
989 "ext_shapeHSM_HsmPsfMoments_yy")
992 """Calculate deconvolved moments."""
993 if "ext_shapeHSM_HsmSourceMoments_xx" in df.columns:
994 hsm = df[
"ext_shapeHSM_HsmSourceMoments_xx"] + df[
"ext_shapeHSM_HsmSourceMoments_yy"]
996 hsm = np.ones(len(df))*np.nan
997 sdss = df[
"base_SdssShape_xx"] + df[
"base_SdssShape_yy"]
998 if "ext_shapeHSM_HsmPsfMoments_xx" in df.columns:
999 psf = df[
"ext_shapeHSM_HsmPsfMoments_xx"] + df[
"ext_shapeHSM_HsmPsfMoments_yy"]
1004 raise RuntimeError(
'No psf shape parameter found in catalog')
1006 return hsm.where(np.isfinite(hsm), sdss) - psf
1010 """Functor to calculate the SDSS trace radius size for sources.
1012 The SDSS trace radius size is a measure of size equal to the square root of
1013 half of the trace of the second moments tensor measured with the
1014 SdssShapeAlgorithm plugin.
1015 This has units of pixels.
1017 name =
"SDSS Trace Size"
1018 shortname =
'sdssTrace'
1019 _columns = (
"base_SdssShape_xx",
"base_SdssShape_yy")
1022 srcSize = np.sqrt(0.5*(df[
"base_SdssShape_xx"] + df[
"base_SdssShape_yy"]))
1027 """Functor to calculate the SDSS trace radius size difference (%) between
1028 the object and the PSF model.
1034 name =
"PSF - SDSS Trace Size"
1035 shortname =
'psf_sdssTrace'
1036 _columns = (
"base_SdssShape_xx",
"base_SdssShape_yy",
1037 "base_SdssShape_psf_xx",
"base_SdssShape_psf_yy")
1040 srcSize = np.sqrt(0.5*(df[
"base_SdssShape_xx"] + df[
"base_SdssShape_yy"]))
1041 psfSize = np.sqrt(0.5*(df[
"base_SdssShape_psf_xx"] + df[
"base_SdssShape_psf_yy"]))
1042 sizeDiff = 100*(srcSize - psfSize)/(0.5*(srcSize + psfSize))
1047 """Functor to calculate the HSM trace radius size for sources.
1049 The HSM trace radius size is a measure of size equal to the square root of
1050 half of the trace of the second moments tensor measured with the
1051 HsmShapeAlgorithm plugin.
1052 This has units of pixels.
1054 name =
'HSM Trace Size'
1055 shortname =
'hsmTrace'
1056 _columns = (
"ext_shapeHSM_HsmSourceMoments_xx",
1057 "ext_shapeHSM_HsmSourceMoments_yy")
1060 srcSize = np.sqrt(0.5*(df[
"ext_shapeHSM_HsmSourceMoments_xx"]
1061 + df[
"ext_shapeHSM_HsmSourceMoments_yy"]))
1066 """Functor to calculate the HSM trace radius size difference (%) between
1067 the object and the PSF model.
1073 name =
'PSF - HSM Trace Size'
1074 shortname =
'psf_HsmTrace'
1075 _columns = (
"ext_shapeHSM_HsmSourceMoments_xx",
1076 "ext_shapeHSM_HsmSourceMoments_yy",
1077 "ext_shapeHSM_HsmPsfMoments_xx",
1078 "ext_shapeHSM_HsmPsfMoments_yy")
1081 srcSize = np.sqrt(0.5*(df[
"ext_shapeHSM_HsmSourceMoments_xx"]
1082 + df[
"ext_shapeHSM_HsmSourceMoments_yy"]))
1083 psfSize = np.sqrt(0.5*(df[
"ext_shapeHSM_HsmPsfMoments_xx"]
1084 + df[
"ext_shapeHSM_HsmPsfMoments_yy"]))
1085 sizeDiff = 100*(srcSize - psfSize)/(0.5*(srcSize + psfSize))
1090 """Functor to calculate the PSF FWHM with second moments measured from the
1091 HsmShapeAlgorithm plugin.
1093 This is in units of arcseconds, and assumes the hsc_rings_v1 skymap pixel
1094 scale of 0.168 arcseconds/pixel.
1098 This conversion assumes the PSF is Gaussian, which is not always the case.
1100 name =
'HSM Psf FWHM'
1101 _columns = (
'ext_shapeHSM_HsmPsfMoments_xx',
'ext_shapeHSM_HsmPsfMoments_yy')
1104 SIGMA2FWHM = 2*np.sqrt(2*np.log(2))
1108 0.5*(df[
'ext_shapeHSM_HsmPsfMoments_xx'] + df[
'ext_shapeHSM_HsmPsfMoments_yy']))
1112 r"""Calculate :math:`e_1` ellipticity component for sources, defined as:
1115 e_1 &= (I_{xx}-I_{yy})/(I_{xx}+I_{yy})
1121 name =
"Distortion Ellipticity (e1)"
1122 shortname =
"Distortion"
1140 r"""Calculate :math:`e_2` ellipticity component for sources, defined as:
1143 e_2 &= 2I_{xy}/(I_{xx}+I_{yy})
1149 name =
"Ellipticity e2"
1166 """Calculate the radius from the quadrupole moments.
1168 This returns the fourth root of the determinant of the second moments
1169 tensor, which has units of pixels.
1192 """Computations using the stored localWcs."""
1193 name =
"LocalWcsOperations"
1208 """Compute the dRA, dDec from dx, dy.
1212 x : `~pandas.Series`
1214 y : `~pandas.Series`
1216 cd11 : `~pandas.Series`
1217 [1, 1] element of the local Wcs affine transform.
1218 cd12 : `~pandas.Series`
1219 [1, 2] element of the local Wcs affine transform.
1220 cd21 : `~pandas.Series`
1221 [2, 1] element of the local Wcs affine transform.
1222 cd22 : `~pandas.Series`
1223 [2, 2] element of the local Wcs affine transform.
1228 RA and Dec conversion of x and y given the local Wcs.
1229 Returned units are in radians.
1233 If x and y are with respect to the CRVAL1, CRVAL2
1234 then this will return the RA, Dec for that WCS.
1236 return (x * cd11 + y * cd12, x * cd21 + y * cd22)
1239 """Compute the local pixel scale conversion.
1243 ra1 : `~pandas.Series`
1244 Ra of the first coordinate in radians.
1245 dec1 : `~pandas.Series`
1246 Dec of the first coordinate in radians.
1247 ra2 : `~pandas.Series`
1248 Ra of the second coordinate in radians.
1249 dec2 : `~pandas.Series`
1250 Dec of the second coordinate in radians.
1254 dist : `~pandas.Series`
1255 Distance on the sphere in radians.
1257 deltaDec = dec2 - dec1
1259 return 2 * np.arcsin(
1261 np.sin(deltaDec / 2) ** 2
1262 + np.cos(dec2) * np.cos(dec1) * np.sin(deltaRa / 2) ** 2))
1265 """Compute the distance on the sphere from x2, y1 to x1, y1.
1269 x1 : `~pandas.Series`
1271 y1 : `~pandas.Series`
1273 x2 : `~pandas.Series`
1275 y2 : `~pandas.Series`
1277 cd11 : `~pandas.Series`
1278 [1, 1] element of the local Wcs affine transform.
1279 cd12 : `~pandas.Series`
1280 [1, 2] element of the local Wcs affine transform.
1281 cd21 : `~pandas.Series`
1282 [2, 1] element of the local Wcs affine transform.
1283 cd22 : `~pandas.Series`
1284 [2, 2] element of the local Wcs affine transform.
1288 Distance : `~pandas.Series`
1289 Arcseconds per pixel at the location of the local WC.
1297 """Compute position angle (E of N) from (ra1, dec1) to (ra2, dec2).
1301 ra1 : iterable [`float`]
1302 RA of the first coordinate [radian].
1303 dec1 : iterable [`float`]
1304 Dec of the first coordinate [radian].
1305 ra2 : iterable [`float`]
1306 RA of the second coordinate [radian].
1307 dec2 : iterable [`float`]
1308 Dec of the second coordinate [radian].
1312 Position Angle: `~pandas.Series`
1317 (ra1, dec1) -> (ra2, dec2) is interpreted as the shorter way around the sphere
1319 For a separation of 0.0001 rad, the position angle is good to 0.0009 rad
1320 all over the sphere.
1324 position_angle = np.zeros(len(ra1))
1325 for i, (r1, d1, r2, d2)
in enumerate(zip(ra1, dec1, ra2, dec2)):
1328 bearing = point1.bearingTo(point2)
1329 pa_ref_angle =
geom.Angle(np.pi/2, geom.radians)
1330 pa = pa_ref_angle - bearing
1333 position_angle[i] = pa.asRadians()
1335 return pd.Series(position_angle)
1338 """Compute position angle (E of N) from detector angle (+y of +x).
1343 detector angle [radian]
1345 [1, 1] element of the local Wcs affine transform.
1347 [1, 2] element of the local Wcs affine transform.
1349 [2, 1] element of the local Wcs affine transform.
1351 [2, 2] element of the local Wcs affine transform.
1355 Position Angle: `~pandas.Series`
1368 """Compute the local pixel scale from the stored CDMatrix.
1380 """Compute the local pixel to scale conversion in arcseconds.
1384 cd11 : `~pandas.Series`
1385 [1, 1] element of the local Wcs affine transform in radians.
1386 cd11 : `~pandas.Series`
1387 [1, 1] element of the local Wcs affine transform in radians.
1388 cd12 : `~pandas.Series`
1389 [1, 2] element of the local Wcs affine transform in radians.
1390 cd21 : `~pandas.Series`
1391 [2, 1] element of the local Wcs affine transform in radians.
1392 cd22 : `~pandas.Series`
1393 [2, 2] element of the local Wcs affine transform in radians.
1397 pixScale : `~pandas.Series`
1398 Arcseconds per pixel at the location of the local WC.
1400 return 3600 * np.degrees(np.sqrt(np.fabs(cd11 * cd22 - cd12 * cd21)))
1410 """Convert a value in units of pixels to units of arcseconds."""
1428 return f
"{self.col}_asArcseconds"
1446 """Convert a value in units of pixels squared to units of arcseconds
1466 return f
"{self.col}_asArcsecondsSq"
1481 return df[self.
col] * pixScale * pixScale
1485 """Compute a position angle from a detector angle and the stored CDMatrix.
1489 position angle : degrees
1492 name =
"PositionAngle"
1504 super().
__init__(colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
1527 """Return the band used to seed multiband forced photometry.
1529 This functor is to be used on Object tables.
1530 It converts the boolean merge_measurements_{band} columns into a single
1531 string representing the first band for which merge_measurements_{band}
1534 Assumes the default priority order of i, r, z, y, g, u.
1536 name =
'Reference Band'
1537 shortname =
'refBand'
1541 return [
"merge_measurement_i",
1542 "merge_measurement_r",
1543 "merge_measurement_z",
1544 "merge_measurement_y",
1545 "merge_measurement_g",
1546 "merge_measurement_u"]
1548 def _func(self, df: pd.DataFrame) -> pd.Series:
1549 def getFilterAliasName(row):
1551 colName = row.idxmax()
1552 return colName.replace(
'merge_measurement_',
'')
1556 columns = [col
for col
in self.
columnscolumns if col
in df.columns]
1558 return df[columns].apply(getFilterAliasName, axis=1,
1559 result_type=
'reduce').astype(
'object')
1563 """Base class for Object table calibrated fluxes and magnitudes."""
1565 AB_FLUX_SCALE = (0 * u.ABmag).to_value(u.nJy)
1566 LOG_AB_FLUX_SCALE = 12.56
1567 FIVE_OVER_2LOG10 = 1.085736204758129569
1571 def __init__(self, colFlux, colFluxErr=None, **kwargs):
1587 return f
'mag_{self.col}'
1591 """Compute sqrt(a^2 + b^2) without under/overflow."""
1592 if np.abs(a) < np.abs(b):
1597 return np.abs(a) * np.sqrt(1. + q*q)
1600 """Convert instrumental flux to nanojanskys."""
1604 """Convert instrumental flux to AB magnitude."""
1605 with warnings.catch_warnings():
1606 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
1607 warnings.filterwarnings(
'ignore',
r'divide by zero')
1608 return -2.5 * np.log10(dn/fluxMag0)
1611 """Convert instrumental flux error to nanojanskys."""
1612 retVal = self.
vhypot(dn * fluxMag0Err, dnErr * fluxMag0)
1617 """Convert instrumental flux error to AB magnitude error."""
1618 retVal = self.
dn2fluxErr(dn, dnErr, fluxMag0, fluxMag0Err) / self.
dn2flux(dn, fluxMag0)
1623 """Convert instrumental flux to nanojanskys."""
1629 """Convert instrumental flux error to nanojanskys."""
1636 return pd.Series(retArr, index=df.index)
1640 """Base class for calibrating the specified instrument flux column using
1641 the local photometric calibration.
1646 Name of the instrument flux column.
1647 instFluxErrCol : `str`
1648 Name of the assocated error columns for ``instFluxCol``.
1649 photoCalibCol : `str`
1650 Name of local calibration column.
1651 photoCalibErrCol : `str`
1652 Error associated with ``photoCalibCol``
1659 logNJanskyToAB = (1 * u.nJy).to_value(u.ABmag)
1674 """Convert instrument flux to nanojanskys.
1678 instFlux : `~numpy.ndarray` or `~pandas.Series`
1679 Array of instrument flux measurements.
1680 localCalib : `~numpy.ndarray` or `~pandas.Series`
1681 Array of local photometric calibration estimates.
1685 calibFlux : `~numpy.ndarray` or `~pandas.Series`
1686 Array of calibrated flux measurements.
1688 return instFlux * localCalib
1691 """Convert instrument flux to nanojanskys.
1695 instFlux : `~numpy.ndarray` or `~pandas.Series`
1696 Array of instrument flux measurements.
1697 instFluxErr : `~numpy.ndarray` or `~pandas.Series`
1698 Errors on associated ``instFlux`` values.
1699 localCalib : `~numpy.ndarray` or `~pandas.Series`
1700 Array of local photometric calibration estimates.
1701 localCalibErr : `~numpy.ndarray` or `~pandas.Series`
1702 Errors on associated ``localCalib`` values.
1706 calibFluxErr : `~numpy.ndarray` or `~pandas.Series`
1707 Errors on calibrated flux measurements.
1709 return np.hypot(instFluxErr * localCalib, instFlux * localCalibErr)
1712 """Convert instrument flux to nanojanskys.
1716 instFlux : `~numpy.ndarray` or `~pandas.Series`
1717 Array of instrument flux measurements.
1718 localCalib : `~numpy.ndarray` or `~pandas.Series`
1719 Array of local photometric calibration estimates.
1723 calibMag : `~numpy.ndarray` or `~pandas.Series`
1724 Array of calibrated AB magnitudes.
1729 """Convert instrument flux err to nanojanskys.
1733 instFlux : `~numpy.ndarray` or `~pandas.Series`
1734 Array of instrument flux measurements.
1735 instFluxErr : `~numpy.ndarray` or `~pandas.Series`
1736 Errors on associated ``instFlux`` values.
1737 localCalib : `~numpy.ndarray` or `~pandas.Series`
1738 Array of local photometric calibration estimates.
1739 localCalibErr : `~numpy.ndarray` or `~pandas.Series`
1740 Errors on associated ``localCalib`` values.
1744 calibMagErr: `~numpy.ndarray` or `~pandas.Series`
1745 Error on calibrated AB magnitudes.
1752 """Compute calibrated fluxes using the local calibration value.
1754 This returns units of nanojanskys.
1763 return f
'flux_{self.instFluxCol}'
1770 """Compute calibrated flux errors using the local calibration value.
1772 This returns units of nanojanskys.
1782 return f
'fluxErr_{self.instFluxCol}'
1790 """Compute absolute mean of dipole fluxes.
1796 LocalDipoleMeanFluxErr
1798 LocalDipoleDiffFluxErr
1828 return f
'dipMeanFlux_{self.instFluxPosCol}_{self.instFluxNegCol}'
1836 """Compute the error on the absolute mean of dipole fluxes.
1844 LocalDipoleDiffFluxErr
1858 return f
'dipMeanFluxErr_{self.instFluxPosCol}_{self.instFluxNegCol}'
1869 """Compute the absolute difference of dipole fluxes.
1871 Calculated value is (abs(pos) - abs(neg)).
1878 LocalDipoleMeanFluxErr
1879 LocalDipoleDiffFluxErr
1890 return f
'dipDiffFlux_{self.instFluxPosCol}_{self.instFluxNegCol}'
1898 """Compute the error on the absolute difference of dipole fluxes.
1905 LocalDipoleMeanFluxErr
1920 return f
'dipDiffFluxErr_{self.instFluxPosCol}_{self.instFluxNegCol}'
1931 """Compute E(B-V) from dustmaps.sfd."""
1932 _defaultDataset =
'ref'
1939 with open(os.devnull,
"w")
as devnull:
1940 with redirect_stdout(devnull):
1941 from dustmaps.sfd
import SFDQuery
1947 coords = SkyCoord(df[
'coord_ra'].values * u.rad, df[
'coord_dec'].values * u.rad)
1948 ebv = self.
sfd(coords)
1951 return pd.Series(ebv, index=df.index).astype(
'float64')
std::vector< SchemaItem< Flag > > * items
A class representing an angle.
Point in an unspecified spherical coordinate system.
__init__(self, col, filt2, filt1, **kwargs)
multilevelColumns(self, parq, **kwargs)
__init__(self, col, **kwargs)
multilevelColumns(self, data, **kwargs)
__call__(self, data, **kwargs)
from_file(cls, filename, **kwargs)
renameCol(cls, col, renameRules)
from_yaml(cls, translationDefinition, **kwargs)
__init__(self, funcs, **kwargs)
pixelScaleArcseconds(self, cd11, cd12, cd21, cd22)
__init__(self, theta_col, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
__init__(self, col, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
__init__(self, col, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
__init__(self, col, **kwargs)
__init__(self, expr, **kwargs)
__call__(self, catalog, **kwargs)
__init__(self, colXX, colXY, colYY, **kwargs)
__init__(self, colXX, colXY, colYY, **kwargs)
_func(self, df, dropna=True)
_get_columnIndex(self, data)
multilevelColumns(self, data, columnIndex=None, returnTuple=False)
__call__(self, data, dropna=False)
_get_data_columnLevels(self, data, columnIndex=None)
_colsFromDict(self, colDict, columnIndex=None)
difference(self, data1, data2, **kwargs)
_get_data_columnLevelNames(self, data, columnIndex=None)
__init__(self, filt=None, dataset=None, noDup=None)
__init__(self, ra, dec, **kwargs)
__init__(self, instFluxPosCol, instFluxNegCol, instFluxPosErrCol, instFluxNegErrCol, photoCalibCol, photoCalibErrCol, **kwargs)
instFluxToNanojansky(self, instFlux, localCalib)
instFluxErrToNanojanskyErr(self, instFlux, instFluxErr, localCalib, localCalibErr)
instFluxToMagnitude(self, instFlux, localCalib)
__init__(self, instFluxCol, instFluxErrCol, photoCalibCol, photoCalibErrCol, **kwargs)
instFluxErrToMagnitudeErr(self, instFlux, instFluxErr, localCalib, localCalibErr)
computeSkySeparation(self, ra1, dec1, ra2, dec2)
__init__(self, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
computeDeltaRaDec(self, x, y, cd11, cd12, cd21, cd22)
getSkySeparationFromPixel(self, x1, y1, x2, y2, cd11, cd12, cd21, cd22)
computePositionAngle(self, ra1, dec1, ra2, dec2)
getPositionAngleFromDetectorAngle(self, theta, cd11, cd12, cd21, cd22)
__init__(self, col1, col2, **kwargs)
__init__(self, *args, **kwargs)
__init__(self, col, **kwargs)
dn2flux(self, dn, fluxMag0)
__init__(self, colFlux, colFluxErr=None, **kwargs)
dn2mag(self, dn, fluxMag0)
dn2MagErr(self, dn, dnErr, fluxMag0, fluxMag0Err)
dn2fluxErr(self, dn, dnErr, fluxMag0, fluxMag0Err)
__call__(self, catalog, **kwargs)
__init__(self, colXX, colXY, colYY, **kwargs)
pd.Series _func(self, pd.DataFrame df)
HtmPixelization provides HTM indexing of points and regions.
init_fromDict(initDict, basePath='lsst.pipe.tasks.functors', typeKey='functor', name=None)
mag_aware_eval(df, expr, log)