22__all__ = [
"init_fromDict",
"Functor",
"CompositeFunctor",
"mag_aware_eval",
23 "CustomFunctor",
"Column",
"Index",
"CoordColumn",
"RAColumn",
24 "DecColumn",
"SinglePrecisionFloatColumn",
"HtmIndex20",
"fluxName",
"fluxErrName",
"Mag",
25 "MagErr",
"MagDiff",
"Color",
"DeconvolvedMoments",
"SdssTraceSize",
26 "PsfSdssTraceSizeDiff",
"HsmTraceSize",
"PsfHsmTraceSizeDiff",
27 "HsmFwhm",
"E1",
"E2",
"RadiusFromQuadrupole",
"LocalWcs",
28 "ComputePixelScale",
"ConvertPixelToArcseconds",
29 "ConvertPixelSqToArcsecondsSq",
30 "ConvertDetectorAngleToPositionAngle",
31 "ReferenceBand",
"Photometry",
32 "NanoJansky",
"NanoJanskyErr",
"LocalPhotometry",
"LocalNanojansky",
33 "LocalNanojanskyErr",
"LocalDipoleMeanFlux",
34 "LocalDipoleMeanFluxErr",
"LocalDipoleDiffFlux",
35 "LocalDipoleDiffFluxErr",
"Ebv",
43from contextlib
import redirect_stdout
44from itertools
import product
46import astropy.units
as u
52from astropy.coordinates
import SkyCoord
53from lsst.daf.butler
import DeferredDatasetHandle
56from lsst.utils.introspection
import get_full_type_name
60 typeKey='functor', name=None):
61 """Initialize an object defined in a dictionary.
63 The object needs to be importable as f'{basePath}.{initDict[typeKey]}'.
64 The positional and keyword arguments (if any) are contained in "args" and
65 "kwargs" entries in the dictionary, respectively.
66 This is used in `~lsst.pipe.tasks.functors.CompositeFunctor.from_yaml` to
67 initialize a composite functor from a specification in a YAML file.
72 Dictionary describing object's initialization.
73 Must contain an entry keyed by ``typeKey`` that is the name of the
74 object, relative to ``basePath``.
76 Path relative to module in which ``initDict[typeKey]`` is defined.
78 Key of ``initDict`` that is the name of the object (relative to
81 initDict = initDict.copy()
83 pythonType = doImport(f
'{basePath}.{initDict.pop(typeKey)}')
85 if 'args' in initDict:
86 args = initDict.pop(
'args')
87 if isinstance(args, str):
90 element = pythonType(*args, **initDict)
91 except Exception
as e:
92 message = f
'Error in constructing functor "{name}" of type {pythonType.__name__} with args: {args}'
93 raise type(e)(message, e.args)
98 """Define and execute a calculation on a DataFrame or Handle holding a
101 The `__call__` method accepts either a `~pandas.DataFrame` object or a
102 `~lsst.daf.butler.DeferredDatasetHandle` or
103 `~lsst.pipe.base.InMemoryDatasetHandle`, and returns the
104 result of the calculation as a single column.
105 Each functor defines what columns are needed for the calculation, and only
106 these columns are read from the dataset handle.
108 The action of `__call__` consists of two steps: first, loading the
109 necessary columns from disk into memory as a `~pandas.DataFrame` object;
110 and second, performing the computation on this DataFrame and returning the
113 To define a new `Functor`, a subclass must define a `_func` method,
114 that takes a `~pandas.DataFrame` and returns result in a `~pandas.Series`.
115 In addition, it must define the following attributes:
117 * `_columns`: The columns necessary to perform the calculation
118 * `name`: A name appropriate for a figure axis label
119 * `shortname`: A name appropriate for use as a dictionary key
121 On initialization, a `Functor` should declare what band (``filt`` kwarg)
122 and dataset (e.g. ``'ref'``, ``'meas'``, ``'forced_src'``) it is intended
124 This enables the `_get_data` method to extract the proper columns from the
126 If not specified, the dataset will fall back on the `_defaultDataset`
128 If band is not specified and ``dataset`` is anything other than ``'ref'``,
129 then an error will be raised when trying to perform the calculation.
131 Originally, `Functor` was set up to expect datasets formatted like the
132 ``deepCoadd_obj`` dataset; that is, a DataFrame with a multi-level column
133 index, with the levels of the column index being ``band``, ``dataset``, and
135 It has since been generalized to apply to DataFrames without multi-level
136 indices and multi-level indices with just ``dataset`` and ``column``
138 In addition, the `_get_data` method that reads the columns from the
139 underlying data will return a DataFrame with column index levels defined by
140 the `_dfLevels` attribute; by default, this is ``column``.
142 The `_dfLevels` attributes should generally not need to be changed, unless
143 `_func` needs columns from multiple filters or datasets to do the
145 An example of this is the `~lsst.pipe.tasks.functors.Color` functor, for
146 which `_dfLevels = ('band', 'column')`, and `_func` expects the DataFrame
147 it gets to have those levels in the column index.
152 Band upon which to do the calculation.
155 Dataset upon which to do the calculation (e.g., 'ref', 'meas',
159 _defaultDataset =
'ref'
160 _dfLevels = (
'column',)
161 _defaultNoDup =
False
163 def __init__(self, filt=None, dataset=None, noDup=None):
167 self.
log = logging.getLogger(type(self).__name__)
163 def __init__(self, filt=None, dataset=None, noDup=None):
…
171 """Do not explode by band if used on object table."""
172 if self.
_noDup is not None:
179 """Columns required to perform calculation."""
180 if not hasattr(self,
'_columns'):
181 raise NotImplementedError(
'Must define columns property or _columns attribute')
185 """Gets the names of the column index levels.
187 This should only be called in the context of a multilevel table.
192 The data to be read, can be a
193 `~lsst.daf.butler.DeferredDatasetHandle` or
194 `~lsst.pipe.base.InMemoryDatasetHandle`.
195 columnIndex (optional): pandas `~pandas.Index` object
196 If not passed, then it is read from the
197 `~lsst.daf.butler.DeferredDatasetHandle`
198 for `~lsst.pipe.base.InMemoryDatasetHandle`.
200 if columnIndex
is None:
201 columnIndex = data.get(component=
"columns")
202 return columnIndex.names
205 """Gets the content of each of the column levels for a multilevel
208 if columnIndex
is None:
209 columnIndex = data.get(component=
"columns")
211 columnLevels = columnIndex.names
213 level: list(np.unique(np.array([c
for c
in columnIndex])[:, i]))
214 for i, level
in enumerate(columnLevels)
216 return columnLevelNames
219 """Converts dictionary column specficiation to a list of columns."""
223 for i, lev
in enumerate(columnLevels):
225 if isinstance(colDict[lev], str):
226 new_colDict[lev] = [colDict[lev]]
228 new_colDict[lev] = colDict[lev]
230 new_colDict[lev] = columnIndex.levels[i]
232 levelCols = [new_colDict[lev]
for lev
in columnLevels]
233 cols = list(product(*levelCols))
234 colsAvailable = [col
for col
in cols
if col
in columnIndex]
238 """Returns columns needed by functor from multilevel dataset.
240 To access tables with multilevel column structure, the
241 `~lsst.daf.butler.DeferredDatasetHandle` or
242 `~lsst.pipe.base.InMemoryDatasetHandle` needs to be passed
243 either a list of tuples or a dictionary.
248 The data as either `~lsst.daf.butler.DeferredDatasetHandle`, or
249 `~lsst.pipe.base.InMemoryDatasetHandle`.
250 columnIndex (optional): pandas `~pandas.Index` object
251 Either passed or read in from
252 `~lsst.daf.butler.DeferredDatasetHandle`.
253 `returnTuple` : `bool`
254 If true, then return a list of tuples rather than the column
255 dictionary specification.
256 This is set to `True` by `CompositeFunctor` in order to be able to
257 combine columns from the various component functors.
260 if not isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
261 raise RuntimeError(f
"Unexpected data type. Got {get_full_type_name(data)}.")
263 if columnIndex
is None:
264 columnIndex = data.get(component=
"columns")
270 columnDict = {
'column': self.
columns,
272 if self.
filt is None:
274 if "band" in columnLevels:
276 columnDict[
"band"] = columnLevelNames[
"band"][0]
278 raise ValueError(f
"'filt' not set for functor {self.name}"
279 f
"(dataset {self.dataset}) "
281 "contains multiple filters in column index. "
282 "Set 'filt' or set 'dataset' to 'ref'.")
284 columnDict[
'band'] = self.
filt
287 return self.
_colsFromDict(columnDict, columnIndex=columnIndex)
292 raise NotImplementedError(
'Must define calculation on DataFrame')
295 """Return columnIndex."""
297 if isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
298 return data.get(component=
"columns")
303 """Retrieve DataFrame necessary for calculation.
305 The data argument can be a `~pandas.DataFrame`, a
306 `~lsst.daf.butler.DeferredDatasetHandle`, or
307 an `~lsst.pipe.base.InMemoryDatasetHandle`.
309 Returns a DataFrame upon which `self._func` can act.
313 if isinstance(data, pd.DataFrame):
314 _data = InMemoryDatasetHandle(data, storageClass=
"DataFrame")
315 elif isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
318 raise RuntimeError(f
"Unexpected type provided for data. Got {get_full_type_name(data)}.")
323 is_multiLevel = isinstance(columnIndex, pd.MultiIndex)
332 df = _data.get(parameters={
"columns": columns})
341 levelsToDrop = [n
for n
in df.columns.names
if n
not in self.
_dfLevels]
342 df.columns = df.columns.droplevel(levelsToDrop)
351 vals = self.
_func(df)
352 except Exception
as e:
353 self.
log.error(
"Exception in %s call: %s: %s", self.
name, type(e).__name__, e)
361 """Computes difference between functor called on two different
362 DataFrame/Handle objects.
364 return self(data1, **kwargs) - self(data2, **kwargs)
367 return pd.Series(np.full(len(df), np.nan), index=df.index)
371 """Full name of functor (suitable for figure labels)."""
372 return NotImplementedError
376 """Short name of functor (suitable for column name/dict key)."""
381 """Perform multiple calculations at once on a catalog.
383 The role of a `CompositeFunctor` is to group together computations from
385 Instead of returning `~pandas.Series` a `CompositeFunctor` returns a
386 `~pandas.DataFrame`, with the column names being the keys of ``funcDict``.
388 The `columns` attribute of a `CompositeFunctor` is the union of all columns
389 in all the component functors.
391 A `CompositeFunctor` does not use a `_func` method itself; rather, when a
392 `CompositeFunctor` is called, all its columns are loaded at once, and the
393 resulting DataFrame is passed to the `_func` method of each component
395 This has the advantage of only doing I/O (reading from parquet file) once,
396 and works because each individual `_func` method of each component functor
397 does not care if there are *extra* columns in the DataFrame being passed;
398 only that it must contain *at least* the `columns` it expects.
400 An important and useful class method is `from_yaml`, which takes as an
401 argument the path to a YAML file specifying a collection of functors.
405 funcs : `dict` or `list`
406 Dictionary or list of functors.
407 If a list, then it will be converted into a dictonary according to the
408 `.shortname` attribute of each functor.
411 name =
"CompositeFunctor"
415 if type(funcs)
is dict:
418 self.
funcDict = {f.shortname: f
for f
in funcs}
436 """Update the functor with new functors."""
437 if isinstance(new, dict):
439 elif isinstance(new, CompositeFunctor):
442 raise TypeError(
'Can only update with dictionary or CompositeFunctor.')
445 if self.
filt is not None:
450 return list(set([x
for y
in [f.columns
for f
in self.
funcDict.values()]
for x
in y]))
460 f.multilevelColumns(data, returnTuple=
True, **kwargs)
for f
in self.
funcDict.values()
468 """Apply the functor to the data table.
473 The data represented as `~lsst.daf.butler.DeferredDatasetHandle`,
474 `~lsst.pipe.base.InMemoryDatasetHandle`, or `~pandas.DataFrame`.
475 The table or a pointer to a table on disk from which columns can
478 if isinstance(data, pd.DataFrame):
479 _data = InMemoryDatasetHandle(data, storageClass=
"DataFrame")
480 elif isinstance(data, (DeferredDatasetHandle, InMemoryDatasetHandle)):
483 raise RuntimeError(f
"Unexpected type provided for data. Got {get_full_type_name(data)}.")
487 if isinstance(columnIndex, pd.MultiIndex):
489 df = _data.get(parameters={
"columns": columns})
494 subdf = f._setLevels(
495 df[f.multilevelColumns(_data, returnTuple=
True, columnIndex=columnIndex)]
497 valDict[k] = f._func(subdf)
498 except Exception
as e:
500 "Exception in %s (funcs: %s) call: %s",
506 valDict[k] = f.fail(subdf)
511 df = _data.get(parameters={
"columns": self.
columns})
513 valDict = {k: f._func(df)
for k, f
in self.
funcDict.items()}
516 for name, colVal
in valDict.items():
517 if len(colVal.shape) != 1:
518 raise RuntimeError(
"Transformed column '%s' is not the shape of a column. "
519 "It is shaped %s and type %s." % (name, colVal.shape, type(colVal)))
522 valDf = pd.concat(valDict, axis=1)
524 print([(k, type(v))
for k, v
in valDict.items()])
527 if kwargs.get(
'dropna',
False):
528 valDf = valDf.dropna(how=
'any')
534 if renameRules
is None:
536 for old, new
in renameRules:
537 if col.startswith(old):
538 col = col.replace(old, new)
544 filename = os.path.expandvars(filename)
545 with open(filename)
as f:
546 translationDefinition = yaml.safe_load(f)
548 return cls.
from_yaml(translationDefinition, **kwargs)
553 for func, val
in translationDefinition[
'funcs'].items():
556 if 'flag_rename_rules' in translationDefinition:
557 renameRules = translationDefinition[
'flag_rename_rules']
561 if 'calexpFlags' in translationDefinition:
562 for flag
in translationDefinition[
'calexpFlags']:
563 funcs[cls.
renameCol(flag, renameRules)] =
Column(flag, dataset=
'calexp')
565 if 'refFlags' in translationDefinition:
566 for flag
in translationDefinition[
'refFlags']:
569 if 'forcedFlags' in translationDefinition:
570 for flag
in translationDefinition[
'forcedFlags']:
571 funcs[cls.
renameCol(flag, renameRules)] =
Column(flag, dataset=
'forced_src')
573 if 'flags' in translationDefinition:
574 for flag
in translationDefinition[
'flags']:
577 return cls(funcs, **kwargs)
581 """Evaluate an expression on a DataFrame, knowing what the 'mag' function
584 Builds on `pandas.DataFrame.eval`, which parses and executes math on
589 df : ~pandas.DataFrame
590 DataFrame on which to evaluate expression.
596 expr_new = re.sub(
r'mag\((\w+)\)',
r'-2.5*log(\g<1>)/log(10)', expr)
597 val = df.eval(expr_new)
598 except Exception
as e:
599 log.error(
"Exception in mag_aware_eval: %s: %s", type(e).__name__, e)
600 expr_new = re.sub(
r'mag\((\w+)\)',
r'-2.5*log(\g<1>_instFlux)/log(10)', expr)
601 val = df.eval(expr_new)
606 """Arbitrary computation on a catalog.
608 Column names (and thus the columns to be loaded from catalog) are found by
609 finding all words and trying to ignore all "math-y" words.
614 Expression to evaluate, to be parsed and executed by
615 `~lsst.pipe.tasks.functors.mag_aware_eval`.
617 _ignore_words = (
'mag',
'sin',
'cos',
'exp',
'log',
'sqrt')
629 flux_cols = re.findall(
r'mag\(\s*(\w+)\s*\)', self.
expr)
631 cols = [c
for c
in re.findall(
r'[a-zA-Z_]+', self.
expr)
if c
not in self.
_ignore_words]
634 if not re.search(
'_instFlux$', c):
635 cols.append(f
'{c}_instFlux')
640 return list(set([c
for c
in cols
if c
not in not_a_col]))
647 """Get column with a specified name."""
666 """Return the value of the index for each object."""
668 columns = [
'coord_ra']
669 _defaultDataset =
'ref'
673 return pd.Series(df.index, index=df.index)
677 """Base class for coordinate column, in degrees."""
686 output = df[self.
col] * 180 / np.pi
if self.
_radians else df[self.
col]
691 """Right Ascension, in degrees."""
696 super().
__init__(
'coord_ra', **kwargs)
699 return super().
__call__(catalog, **kwargs)
703 """Declination, in degrees."""
708 super().
__init__(
'coord_dec', **kwargs)
711 return super().
__call__(catalog, **kwargs)
715 """Uncertainty in Right Ascension, in degrees."""
720 super().
__init__(
'coord_raErr', **kwargs)
724 """Uncertainty in declination, in degrees."""
729 super().
__init__(
'coord_decErr', **kwargs)
733 """Coordinate covariance column, in degrees."""
739 super().
__init__(
'coord_ra_dec_Cov', **kwargs)
744 output = df[self.
col]*(180/np.pi)**2
if self.
_radians else df[self.
col]
749 """A column with a band in a multiband table."""
759 return df[self.
col].astype(np.float32)
763 """Return a column cast to a single-precision float."""
766 return df[self.
col].astype(np.float32)
770 """Compute the level 20 HtmIndex for the catalog.
774 This functor was implemented to satisfy requirements of old APDB interface
775 which required the ``pixelId`` column in DiaObject with HTM20 index.
776 The APDB interface had migrated to not need that information, but we keep
777 this class in case it may be useful for something else.
792 def computePixel(row):
801 return self.
pixelator.index(sphPoint.getVector())
803 return df.apply(computePixel, axis=1, result_type=
'reduce').astype(
'int64')
807 """Append _instFlux to the column name if it doesn't have it already."""
808 if not col.endswith(
'_instFlux'):
814 """Append _instFluxErr to the column name if it doesn't have it already."""
815 if not col.endswith(
'_instFluxErr'):
816 col +=
'_instFluxErr'
821 """Compute calibrated magnitude.
823 Returns the flux at mag=0.
824 The default ``fluxMag0`` is 63095734448.0194, which is default for HSC.
825 TO DO: This default should be made configurable in DM-21955.
827 This calculation hides warnings about invalid values and dividing by zero.
829 As with all functors, a ``dataset`` and ``filt`` kwarg should be provided
831 Unlike the default `Functor`, however, the default dataset for a `Mag` is
832 ``'meas'``, rather than ``'ref'``.
837 Name of flux column from which to compute magnitude.
838 Can be parseable by the `~lsst.pipe.tasks.functors.fluxName` function;
839 that is, you can pass ``'modelfit_CModel'`` instead of
840 ``'modelfit_CModel_instFlux'``, and it will understand.
842 _defaultDataset =
'meas'
856 with warnings.catch_warnings():
857 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
858 warnings.filterwarnings(
'ignore',
r'divide by zero')
863 return f
'mag_{self.col}'
867 """Compute calibrated magnitude uncertainty.
872 Name of the flux column.
885 with warnings.catch_warnings():
886 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
887 warnings.filterwarnings(
'ignore',
r'divide by zero')
888 fluxCol, fluxErrCol = self.
columns
889 x = df[fluxErrCol] / df[fluxCol]
891 magErr = (2.5 / np.log(10.)) * np.sqrt(x*x + y*y)
896 return super().name +
'_err'
900 """Functor to calculate magnitude difference."""
901 _defaultDataset =
'meas'
913 with warnings.catch_warnings():
914 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
915 warnings.filterwarnings(
'ignore',
r'divide by zero')
916 return -2.5*np.log10(df[self.
col1]/df[self.
col2])
920 return f
'(mag_{self.col1} - mag_{self.col2})'
924 return f
'magDiff_{self.col1}_{self.col2}'
928 """Compute the color between two filters.
930 Computes color by initializing two different `Mag` functors based on the
931 ``col`` and filters provided, and then returning the difference.
933 This is enabled by the `_func` method expecting a DataFrame with a
934 multilevel column index, with both ``'band'`` and ``'column'``, instead of
935 just ``'column'``, which is the `Functor` default.
936 This is controlled by the `_dfLevels` attribute.
938 Also of note, the default dataset for `Color` is ``forced_src'``, whereas
939 for `Mag` it is ``'meas'``.
944 Name of the flux column from which to compute; same as would be passed
945 to `~lsst.pipe.tasks.functors.Mag`.
948 Filters from which to compute magnitude difference.
949 Color computed is ``Mag(filt2) - Mag(filt1)``.
951 _defaultDataset =
'forced_src'
952 _dfLevels = (
'band',
'column')
958 raise RuntimeError(
"Cannot compute Color for %s: %s - %s " % (col, filt2, filt1))
976 mag2 = self.mag2.
_func(df[self.filt2])
977 mag1 = self.mag1.
_func(df[self.filt1])
982 return [self.
mag1.col, self.
mag2.col]
989 return f
'{self.filt2} - {self.filt1} ({self.col})'
993 return f
"{self.col}_{self.filt2.replace('-', '')}m{self.filt1.replace('-', '')}"
997 """This functor subtracts the trace of the PSF second moments from the
998 trace of the second moments of the source.
1000 If the HsmShapeAlgorithm measurement is valid, then these will be used for
1002 Otherwise, the SdssShapeAlgorithm measurements will be used.
1004 name =
'Deconvolved Moments'
1005 shortname =
'deconvolvedMoments'
1006 _columns = (
"ext_shapeHSM_HsmSourceMoments_xx",
1007 "ext_shapeHSM_HsmSourceMoments_yy",
1008 "base_SdssShape_xx",
"base_SdssShape_yy",
1009 "ext_shapeHSM_HsmPsfMoments_xx",
1010 "ext_shapeHSM_HsmPsfMoments_yy")
1013 """Calculate deconvolved moments."""
1014 if "ext_shapeHSM_HsmSourceMoments_xx" in df.columns:
1015 hsm = df[
"ext_shapeHSM_HsmSourceMoments_xx"] + df[
"ext_shapeHSM_HsmSourceMoments_yy"]
1017 hsm = np.ones(len(df))*np.nan
1018 sdss = df[
"base_SdssShape_xx"] + df[
"base_SdssShape_yy"]
1019 if "ext_shapeHSM_HsmPsfMoments_xx" in df.columns:
1020 psf = df[
"ext_shapeHSM_HsmPsfMoments_xx"] + df[
"ext_shapeHSM_HsmPsfMoments_yy"]
1025 raise RuntimeError(
'No psf shape parameter found in catalog')
1027 return hsm.where(np.isfinite(hsm), sdss) - psf
1031 """Functor to calculate the SDSS trace radius size for sources.
1033 The SDSS trace radius size is a measure of size equal to the square root of
1034 half of the trace of the second moments tensor measured with the
1035 SdssShapeAlgorithm plugin.
1036 This has units of pixels.
1038 name =
"SDSS Trace Size"
1039 shortname =
'sdssTrace'
1040 _columns = (
"base_SdssShape_xx",
"base_SdssShape_yy")
1043 srcSize = np.sqrt(0.5*(df[
"base_SdssShape_xx"] + df[
"base_SdssShape_yy"]))
1048 """Functor to calculate the SDSS trace radius size difference (%) between
1049 the object and the PSF model.
1055 name =
"PSF - SDSS Trace Size"
1056 shortname =
'psf_sdssTrace'
1057 _columns = (
"base_SdssShape_xx",
"base_SdssShape_yy",
1058 "base_SdssShape_psf_xx",
"base_SdssShape_psf_yy")
1061 srcSize = np.sqrt(0.5*(df[
"base_SdssShape_xx"] + df[
"base_SdssShape_yy"]))
1062 psfSize = np.sqrt(0.5*(df[
"base_SdssShape_psf_xx"] + df[
"base_SdssShape_psf_yy"]))
1063 sizeDiff = 100*(srcSize - psfSize)/(0.5*(srcSize + psfSize))
1068 """Functor to calculate the HSM trace radius size for sources.
1070 The HSM trace radius size is a measure of size equal to the square root of
1071 half of the trace of the second moments tensor measured with the
1072 HsmShapeAlgorithm plugin.
1073 This has units of pixels.
1075 name =
'HSM Trace Size'
1076 shortname =
'hsmTrace'
1077 _columns = (
"ext_shapeHSM_HsmSourceMoments_xx",
1078 "ext_shapeHSM_HsmSourceMoments_yy")
1081 srcSize = np.sqrt(0.5*(df[
"ext_shapeHSM_HsmSourceMoments_xx"]
1082 + df[
"ext_shapeHSM_HsmSourceMoments_yy"]))
1087 """Functor to calculate the HSM trace radius size difference (%) between
1088 the object and the PSF model.
1094 name =
'PSF - HSM Trace Size'
1095 shortname =
'psf_HsmTrace'
1096 _columns = (
"ext_shapeHSM_HsmSourceMoments_xx",
1097 "ext_shapeHSM_HsmSourceMoments_yy",
1098 "ext_shapeHSM_HsmPsfMoments_xx",
1099 "ext_shapeHSM_HsmPsfMoments_yy")
1102 srcSize = np.sqrt(0.5*(df[
"ext_shapeHSM_HsmSourceMoments_xx"]
1103 + df[
"ext_shapeHSM_HsmSourceMoments_yy"]))
1104 psfSize = np.sqrt(0.5*(df[
"ext_shapeHSM_HsmPsfMoments_xx"]
1105 + df[
"ext_shapeHSM_HsmPsfMoments_yy"]))
1106 sizeDiff = 100*(srcSize - psfSize)/(0.5*(srcSize + psfSize))
1111 """Functor to calculate the PSF FWHM with second moments measured from the
1112 HsmShapeAlgorithm plugin.
1114 This is in units of arcseconds, and assumes the hsc_rings_v1 skymap pixel
1115 scale of 0.168 arcseconds/pixel.
1119 This conversion assumes the PSF is Gaussian, which is not always the case.
1121 name =
'HSM Psf FWHM'
1122 _columns = (
'ext_shapeHSM_HsmPsfMoments_xx',
'ext_shapeHSM_HsmPsfMoments_yy')
1125 SIGMA2FWHM = 2*np.sqrt(2*np.log(2))
1129 0.5*(df[
'ext_shapeHSM_HsmPsfMoments_xx']
1130 + df[
'ext_shapeHSM_HsmPsfMoments_yy']))).astype(np.float32)
1134 r"""Calculate :math:`e_1` ellipticity component for sources, defined as:
1137 e_1 &= (I_{xx}-I_{yy})/(I_{xx}+I_{yy})
1143 name =
"Distortion Ellipticity (e1)"
1144 shortname =
"Distortion"
1159 + df[self.
colYY])).astype(np.float32)
1163 r"""Calculate :math:`e_2` ellipticity component for sources, defined as:
1166 e_2 &= 2I_{xy}/(I_{xx}+I_{yy})
1172 name =
"Ellipticity e2"
1185 return (2*df[self.
colXY] / (df[self.
colXX] + df[self.
colYY])).astype(np.float32)
1189 """Calculate the radius from the quadrupole moments.
1191 This returns the fourth root of the determinant of the second moments
1192 tensor, which has units of pixels.
1211 return ((df[self.
colXX]*df[self.
colYY] - df[self.
colXY]**2)**0.25).astype(np.float32)
1215 """Computations using the stored localWcs."""
1216 name =
"LocalWcsOperations"
1231 """Compute the dRA, dDec from dx, dy.
1235 x : `~pandas.Series`
1237 y : `~pandas.Series`
1239 cd11 : `~pandas.Series`
1240 [1, 1] element of the local Wcs affine transform.
1241 cd12 : `~pandas.Series`
1242 [1, 2] element of the local Wcs affine transform.
1243 cd21 : `~pandas.Series`
1244 [2, 1] element of the local Wcs affine transform.
1245 cd22 : `~pandas.Series`
1246 [2, 2] element of the local Wcs affine transform.
1251 RA and Dec conversion of x and y given the local Wcs.
1252 Returned units are in radians.
1256 If x and y are with respect to the CRVAL1, CRVAL2
1257 then this will return the RA, Dec for that WCS.
1259 return (x * cd11 + y * cd12, x * cd21 + y * cd22)
1262 """Compute the local pixel scale conversion.
1266 ra1 : `~pandas.Series`
1267 Ra of the first coordinate in radians.
1268 dec1 : `~pandas.Series`
1269 Dec of the first coordinate in radians.
1270 ra2 : `~pandas.Series`
1271 Ra of the second coordinate in radians.
1272 dec2 : `~pandas.Series`
1273 Dec of the second coordinate in radians.
1277 dist : `~pandas.Series`
1278 Distance on the sphere in radians.
1280 deltaDec = dec2 - dec1
1282 return 2 * np.arcsin(
1284 np.sin(deltaDec / 2) ** 2
1285 + np.cos(dec2) * np.cos(dec1) * np.sin(deltaRa / 2) ** 2))
1288 """Compute the distance on the sphere from x2, y1 to x1, y1.
1292 x1 : `~pandas.Series`
1294 y1 : `~pandas.Series`
1296 x2 : `~pandas.Series`
1298 y2 : `~pandas.Series`
1300 cd11 : `~pandas.Series`
1301 [1, 1] element of the local Wcs affine transform.
1302 cd12 : `~pandas.Series`
1303 [1, 2] element of the local Wcs affine transform.
1304 cd21 : `~pandas.Series`
1305 [2, 1] element of the local Wcs affine transform.
1306 cd22 : `~pandas.Series`
1307 [2, 2] element of the local Wcs affine transform.
1311 Distance : `~pandas.Series`
1312 Arcseconds per pixel at the location of the local WC.
1320 """Compute position angle (E of N) from (ra1, dec1) to (ra2, dec2).
1324 ra1 : iterable [`float`]
1325 RA of the first coordinate [radian].
1326 dec1 : iterable [`float`]
1327 Dec of the first coordinate [radian].
1328 ra2 : iterable [`float`]
1329 RA of the second coordinate [radian].
1330 dec2 : iterable [`float`]
1331 Dec of the second coordinate [radian].
1335 Position Angle: `~pandas.Series`
1340 (ra1, dec1) -> (ra2, dec2) is interpreted as the shorter way around the sphere
1342 For a separation of 0.0001 rad, the position angle is good to 0.0009 rad
1343 all over the sphere.
1347 position_angle = np.zeros(len(ra1))
1348 for i, (r1, d1, r2, d2)
in enumerate(zip(ra1, dec1, ra2, dec2)):
1351 bearing = point1.bearingTo(point2)
1352 pa_ref_angle =
geom.Angle(np.pi/2, geom.radians)
1353 pa = pa_ref_angle - bearing
1356 position_angle[i] = pa.asRadians()
1358 return pd.Series(position_angle)
1361 """Compute position angle (E of N) from detector angle (+y of +x).
1366 detector angle [radian]
1368 [1, 1] element of the local Wcs affine transform.
1370 [1, 2] element of the local Wcs affine transform.
1372 [2, 1] element of the local Wcs affine transform.
1374 [2, 2] element of the local Wcs affine transform.
1378 Position Angle: `~pandas.Series`
1391 """Compute the local pixel scale from the stored CDMatrix.
1403 """Compute the local pixel to scale conversion in arcseconds.
1407 cd11 : `~pandas.Series`
1408 [1, 1] element of the local Wcs affine transform in radians.
1409 cd11 : `~pandas.Series`
1410 [1, 1] element of the local Wcs affine transform in radians.
1411 cd12 : `~pandas.Series`
1412 [1, 2] element of the local Wcs affine transform in radians.
1413 cd21 : `~pandas.Series`
1414 [2, 1] element of the local Wcs affine transform in radians.
1415 cd22 : `~pandas.Series`
1416 [2, 2] element of the local Wcs affine transform in radians.
1420 pixScale : `~pandas.Series`
1421 Arcseconds per pixel at the location of the local WC.
1423 return 3600 * np.degrees(np.sqrt(np.fabs(cd11 * cd22 - cd12 * cd21)))
1433 """Convert a value in units of pixels to units of arcseconds."""
1451 return f
"{self.col}_asArcseconds"
1469 """Convert a value in units of pixels squared to units of arcseconds
1489 return f
"{self.col}_asArcsecondsSq"
1504 return df[self.
col] * pixScale * pixScale
1508 """Compute a position angle from a detector angle and the stored CDMatrix.
1512 position angle : degrees
1515 name =
"PositionAngle"
1527 super().
__init__(colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
1550 """Return the band used to seed multiband forced photometry.
1552 This functor is to be used on Object tables.
1553 It converts the boolean merge_measurements_{band} columns into a single
1554 string representing the first band for which merge_measurements_{band}
1557 Assumes the default priority order of i, r, z, y, g, u.
1559 name =
'Reference Band'
1560 shortname =
'refBand'
1562 band_order = (
"i",
"r",
"z",
"y",
"g",
"u")
1570 return [f
"merge_measurement_{band}" for band
in bands]
1572 def _func(self, df: pd.DataFrame) -> pd.Series:
1573 def getFilterAliasName(row):
1575 colName = row.idxmax()
1576 return colName.replace(
'merge_measurement_',
'')
1580 columns = [col
for col
in self.
columns if col
in df.columns]
1582 return df[columns].apply(getFilterAliasName, axis=1,
1583 result_type=
'reduce').astype(
'object')
1572 def _func(self, df: pd.DataFrame) -> pd.Series:
…
1585 def __init__(self, bands: tuple[str] | list[str] |
None =
None, **kwargs):
1585 def __init__(self, bands: tuple[str] | list[str] |
None =
None, **kwargs):
…
1591 """Base class for Object table calibrated fluxes and magnitudes."""
1593 AB_FLUX_SCALE = (0 * u.ABmag).to_value(u.nJy)
1594 LOG_AB_FLUX_SCALE = 12.56
1595 FIVE_OVER_2LOG10 = 1.085736204758129569
1599 def __init__(self, colFlux, colFluxErr=None, **kwargs):
1615 return f
'mag_{self.col}'
1619 """Compute sqrt(a^2 + b^2) without under/overflow."""
1620 if np.abs(a) < np.abs(b):
1625 return np.abs(a) * np.sqrt(1. + q*q)
1628 """Convert instrumental flux to nanojanskys."""
1629 return (self.
AB_FLUX_SCALE * dn / fluxMag0).astype(np.float32)
1632 """Convert instrumental flux to AB magnitude."""
1633 with warnings.catch_warnings():
1634 warnings.filterwarnings(
'ignore',
r'invalid value encountered')
1635 warnings.filterwarnings(
'ignore',
r'divide by zero')
1636 return (-2.5 * np.log10(dn/fluxMag0)).astype(np.float32)
1639 """Convert instrumental flux error to nanojanskys."""
1640 retVal = self.
vhypot(dn * fluxMag0Err, dnErr * fluxMag0)
1642 return retVal.astype(np.float32)
1645 """Convert instrumental flux error to AB magnitude error."""
1646 retVal = self.
dn2fluxErr(dn, dnErr, fluxMag0, fluxMag0Err) / self.
dn2flux(dn, fluxMag0)
1651 """Convert instrumental flux to nanojanskys."""
1657 """Convert instrumental flux error to nanojanskys."""
1664 return pd.Series(retArr, index=df.index)
1668 """Base class for calibrating the specified instrument flux column using
1669 the local photometric calibration.
1674 Name of the instrument flux column.
1675 instFluxErrCol : `str`
1676 Name of the assocated error columns for ``instFluxCol``.
1677 photoCalibCol : `str`
1678 Name of local calibration column.
1679 photoCalibErrCol : `str`, optional
1680 Error associated with ``photoCalibCol``. Ignored and deprecated; will
1681 be removed after v29.
1688 logNJanskyToAB = (1 * u.nJy).to_value(u.ABmag)
1694 photoCalibErrCol=None,
1700 if photoCalibErrCol
is not None:
1701 warnings.warn(
"The photoCalibErrCol argument is deprecated and will be removed after v29.",
1702 category=FutureWarning)
1706 """Convert instrument flux to nanojanskys.
1710 instFlux : `~numpy.ndarray` or `~pandas.Series`
1711 Array of instrument flux measurements.
1712 localCalib : `~numpy.ndarray` or `~pandas.Series`
1713 Array of local photometric calibration estimates.
1717 calibFlux : `~numpy.ndarray` or `~pandas.Series`
1718 Array of calibrated flux measurements.
1720 return instFlux * localCalib
1723 """Convert instrument flux to nanojanskys.
1727 instFlux : `~numpy.ndarray` or `~pandas.Series`
1728 Array of instrument flux measurements. Ignored (accepted for
1729 backwards compatibility and consistency with magnitude-error
1730 calculation methods).
1731 instFluxErr : `~numpy.ndarray` or `~pandas.Series`
1732 Errors on associated ``instFlux`` values.
1733 localCalib : `~numpy.ndarray` or `~pandas.Series`
1734 Array of local photometric calibration estimates.
1735 localCalibErr : `~numpy.ndarray` or `~pandas.Series`, optional
1736 Errors on associated ``localCalib`` values. Ignored and deprecated;
1737 will be removed after v29.
1741 calibFluxErr : `~numpy.ndarray` or `~pandas.Series`
1742 Errors on calibrated flux measurements.
1745 if localCalibErr
is not None:
1746 warnings.warn(
"The localCalibErr argument is deprecated and will be removed after v29.",
1747 category=FutureWarning)
1748 return instFluxErr * localCalib
1751 """Convert instrument flux to nanojanskys.
1755 instFlux : `~numpy.ndarray` or `~pandas.Series`
1756 Array of instrument flux measurements.
1757 localCalib : `~numpy.ndarray` or `~pandas.Series`
1758 Array of local photometric calibration estimates.
1762 calibMag : `~numpy.ndarray` or `~pandas.Series`
1763 Array of calibrated AB magnitudes.
1768 """Convert instrument flux err to nanojanskys.
1772 instFlux : `~numpy.ndarray` or `~pandas.Series`
1773 Array of instrument flux measurements.
1774 instFluxErr : `~numpy.ndarray` or `~pandas.Series`
1775 Errors on associated ``instFlux`` values.
1776 localCalib : `~numpy.ndarray` or `~pandas.Series`
1777 Array of local photometric calibration estimates.
1778 localCalibErr : `~numpy.ndarray` or `~pandas.Series`, optional
1779 Errors on associated ``localCalib`` values. Ignored and deprecated;
1780 will be removed after v29.
1784 calibMagErr: `~numpy.ndarray` or `~pandas.Series`
1785 Error on calibrated AB magnitudes.
1788 if localCalibErr
is not None:
1789 warnings.warn(
"The localCalibErr argument is deprecated and will be removed after v29.",
1790 category=FutureWarning)
1796 """Compute calibrated fluxes using the local calibration value.
1798 This returns units of nanojanskys.
1807 return f
'flux_{self.instFluxCol}'
1815 """Compute calibrated flux errors using the local calibration value.
1817 This returns units of nanojanskys.
1826 return f
'fluxErr_{self.instFluxCol}'
1834 """Compute absolute mean of dipole fluxes.
1840 LocalDipoleMeanFluxErr
1842 LocalDipoleDiffFluxErr
1851 photoCalibErrCol=None,
1872 return f
'dipMeanFlux_{self.instFluxPosCol}_{self.instFluxNegCol}'
1880 """Compute the error on the absolute mean of dipole fluxes.
1888 LocalDipoleDiffFluxErr
1901 return f
'dipMeanFluxErr_{self.instFluxPosCol}_{self.instFluxNegCol}'
1908 """Compute the absolute difference of dipole fluxes.
1910 Calculated value is (abs(pos) - abs(neg)).
1917 LocalDipoleMeanFluxErr
1918 LocalDipoleDiffFluxErr
1929 return f
'dipDiffFlux_{self.instFluxPosCol}_{self.instFluxNegCol}'
1937 """Compute the error on the absolute difference of dipole fluxes.
1944 LocalDipoleMeanFluxErr
1958 return f
'dipDiffFluxErr_{self.instFluxPosCol}_{self.instFluxNegCol}'
1965 """Compute E(B-V) from dustmaps.sfd."""
1966 _defaultDataset =
'ref'
1973 with open(os.devnull,
"w")
as devnull:
1974 with redirect_stdout(devnull):
1975 from dustmaps.sfd
import SFDQuery
1981 coords = SkyCoord(df[
'coord_ra'].values * u.rad, df[
'coord_dec'].values * u.rad)
1982 ebv = self.
sfd(coords)
1983 return pd.Series(ebv, index=df.index).astype(
'float32')
A class representing an angle.
Point in an unspecified spherical coordinate system.
__init__(self, col, filt2, filt1, **kwargs)
multilevelColumns(self, parq, **kwargs)
__init__(self, col, **kwargs)
multilevelColumns(self, data, **kwargs)
__call__(self, data, **kwargs)
from_file(cls, filename, **kwargs)
renameCol(cls, col, renameRules)
from_yaml(cls, translationDefinition, **kwargs)
__init__(self, funcs, **kwargs)
pixelScaleArcseconds(self, cd11, cd12, cd21, cd22)
__init__(self, theta_col, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
__init__(self, col, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
__init__(self, col, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
__init__(self, col, **kwargs)
__init__(self, expr, **kwargs)
__call__(self, catalog, **kwargs)
__init__(self, colXX, colXY, colYY, **kwargs)
__init__(self, colXX, colXY, colYY, **kwargs)
_func(self, df, dropna=True)
_get_columnIndex(self, data)
multilevelColumns(self, data, columnIndex=None, returnTuple=False)
__call__(self, data, dropna=False)
_get_data_columnLevels(self, data, columnIndex=None)
_colsFromDict(self, colDict, columnIndex=None)
difference(self, data1, data2, **kwargs)
_get_data_columnLevelNames(self, data, columnIndex=None)
__init__(self, filt=None, dataset=None, noDup=None)
__init__(self, ra, dec, **kwargs)
__init__(self, instFluxPosCol, instFluxNegCol, instFluxPosErrCol, instFluxNegErrCol, photoCalibCol, photoCalibErrCol=None, **kwargs)
instFluxToNanojansky(self, instFlux, localCalib)
instFluxErrToMagnitudeErr(self, instFlux, instFluxErr, localCalib, localCalibErr=None)
instFluxToMagnitude(self, instFlux, localCalib)
__init__(self, instFluxCol, instFluxErrCol, photoCalibCol, photoCalibErrCol=None, **kwargs)
instFluxErrToNanojanskyErr(self, instFlux, instFluxErr, localCalib, localCalibErr=None)
computeSkySeparation(self, ra1, dec1, ra2, dec2)
__init__(self, colCD_1_1, colCD_1_2, colCD_2_1, colCD_2_2, **kwargs)
computeDeltaRaDec(self, x, y, cd11, cd12, cd21, cd22)
getSkySeparationFromPixel(self, x1, y1, x2, y2, cd11, cd12, cd21, cd22)
computePositionAngle(self, ra1, dec1, ra2, dec2)
getPositionAngleFromDetectorAngle(self, theta, cd11, cd12, cd21, cd22)
__init__(self, col1, col2, **kwargs)
__init__(self, *args, **kwargs)
__init__(self, col, **kwargs)
__init__(self, col, band_to_check, **kwargs)
dn2flux(self, dn, fluxMag0)
__init__(self, colFlux, colFluxErr=None, **kwargs)
dn2mag(self, dn, fluxMag0)
dn2MagErr(self, dn, dnErr, fluxMag0, fluxMag0Err)
dn2fluxErr(self, dn, dnErr, fluxMag0, fluxMag0Err)
__call__(self, catalog, **kwargs)
__init__(self, colXX, colXY, colYY, **kwargs)
pd.Series _func(self, pd.DataFrame df)
__init__(self, tuple[str]|list[str]|None bands=None, **kwargs)
HtmPixelization provides HTM indexing of points and regions.
init_fromDict(initDict, basePath='lsst.pipe.tasks.functors', typeKey='functor', name=None)
mag_aware_eval(df, expr, log)