LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
ScaledBasis2d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
24 
26 
27 namespace lsst { namespace geom { namespace polynomials {
28 
29 template <typename Basis>
30 class Function2d;
31 
42 template <typename Nested>
44 public:
45 
48 
51 
53  using Workspace = typename Nested::Workspace;
54 
56  using IndexRange = typename Nested::IndexRange;
57 
59  explicit ScaledBasis2d(Nested const & nested, Scaling2d const & scaling) :
60  _nested(nested),
61  _scaling(scaling)
62  {}
63 
78  _nested(order),
79  _scaling(makeUnitRangeScaling2d(box))
80  {}
81 
83  ScaledBasis2d(ScaledBasis2d const &) = default;
84 
87 
89  ScaledBasis2d & operator=(ScaledBasis2d const &) = default;
90 
93 
95  Nested const & getNested() const noexcept { return _nested; }
96 
98  Scaling2d const & getScaling() const noexcept { return _scaling; }
99 
101  std::size_t getOrder() const { return getNested().getOrder(); }
102 
104  std::size_t size() const { return getNested().size(); }
105 
112  Scaled scaled(Scaling2d const & first) const {
113  return getNested().scaled(first.then(getScaling()));
114  }
115 
117  int index(int x, int y) const { return getNested().index(x, y); }
118 
139  IndexRange getIndices() const { return getNested().getIndices(); }
140 
142  Workspace makeWorkspace() const { return getNested().makeWorkspace();}
143 
162  template <typename Vector>
163  double sumWith(geom::Point2D const & point, Vector const & coefficients,
164  SumMode mode=SumMode::FAST) const {
165  return getNested().sumWith(getScaling().applyForward(point), coefficients, mode);
166  }
167 
169  template <typename Vector>
170  double sumWith(geom::Point2D const & point, Vector const & coefficients,
171  Workspace & workspace, SumMode mode=SumMode::FAST) const {
172  return getNested().sumWith(getScaling().applyForward(point), coefficients, workspace, mode);
173  }
174 
185  template <typename Vector>
186  void fill(geom::Point2D const & point, Vector && basis) const {
187  return getNested().fill(getScaling().applyForward(point),
188  std::forward<Vector>(basis));
189  }
190 
192  template <typename Vector>
193  void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
194  return getNested().fill(getScaling().applyForward(point),
195  std::forward<Vector>(basis),
196  workspace);
197  }
198 
199 private:
200  Nested _nested;
201  Scaling2d _scaling;
202 };
203 
204 }}} // namespace lsst::geom::polynomials
205 
206 #endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
ndarray::Array< double const, 2, 2 > coefficients
double x
table::Key< double > scaling
int y
Definition: SpanSet.cc:48
table::Key< int > nested
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
A 2-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis2d.h:43
typename Nested::Workspace Workspace
The type returned by makeWorkspace().
Definition: ScaledBasis2d.h:53
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients (external workspace version).
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
Evaluate the basis at a given point (external workspace version).
ScaledBasis2d(ScaledBasis2d const &)=default
Default copy constructor.
ScaledBasis2d(Nested const &nested, Scaling2d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis2d.h:59
ScaledBasis2d & operator=(ScaledBasis2d const &)=default
Default copy assignment.
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis2d.h:95
ScaledBasis2d(std::size_t order, Box2D const &box)
Construct a basis that remaps the given box to [-1, 1]x[-1, 1] before evaluating the nested polynomia...
Definition: ScaledBasis2d.h:77
IndexRange getIndices() const
Return a range of iterators that dereference to Index2d.
ScaledBasis2d(ScaledBasis2d &&)=default
Default move constructor.
Workspace makeWorkspace() const
Allocate a workspace that can be passed to sumWith() and fill() to avoid repeated memory allocations.
std::size_t size() const
Return the number of elements in the basis.
Scaled scaled(Scaling2d const &first) const
Return a scaled basis that delegates to a copy of this.
void fill(geom::Point2D const &point, Vector &&basis) const
Evaluate the basis at a given point.
ScaledBasis2d & operator=(ScaledBasis2d &&)=default
Default move assignment.
std::size_t getOrder() const
Return the order of the basis.
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
Scaling2d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis2d.h:98
int index(int x, int y) const
Return the flattened index of the basis function with the given x and y orders.
typename Nested::IndexRange IndexRange
The type returned by getIndices().
Definition: ScaledBasis2d.h:56
A 2-d separable affine transform that can be used to map one interval to another.
Definition: Scaling2d.h:48
Scaling2d makeUnitRangeScaling2d(geom::Box2D const &box)
Return a Scaling1d that maps the given box to [-1, 1]x[-1, 1].
Definition: Scaling2d.h:112
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
A base class for image defects.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
table::Key< int > order