LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
_unitVector3d.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * See COPYRIGHT file at the top of the source tree.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22#include "pybind11/pybind11.h"
23
24#include "lsst/sphgeom/python.h"
25
26#include "lsst/sphgeom/Angle.h"
27#include "lsst/sphgeom/LonLat.h"
31
32namespace py = pybind11;
33using namespace pybind11::literals;
34
35namespace lsst {
36namespace sphgeom {
37
38template <>
40 // Provide the equivalent of the UnitVector3d to Vector3d C++ cast
41 // operator in Python
42 py::implicitly_convertible<UnitVector3d, Vector3d>();
43
44 cls.def_static(
45 "orthogonalTo",
47 "vector"_a);
48 cls.def_static("orthogonalTo",
49 (UnitVector3d(*)(Vector3d const &, Vector3d const &)) &
51 "vector1"_a, "vector2"_a);
52 cls.def_static("orthogonalTo",
53 (UnitVector3d(*)(NormalizedAngle const &)) &
55 "meridian"_a);
56 cls.def_static("northFrom", &UnitVector3d::northFrom, "vector"_a);
57 cls.def_static("X", &UnitVector3d::X);
58 cls.def_static("Y", &UnitVector3d::Y);
59 cls.def_static("Z", &UnitVector3d::Z);
60 // The fromNormalized static factory functions are not exposed to
61 // Python, as they are easy to misuse and intended only for performance
62 // critical code (i.e. not Python).
63
64 cls.def(py::init<>());
65 cls.def(py::init<UnitVector3d const &>(), "unitVector"_a);
66 cls.def(py::init<Vector3d const &>(), "vector"_a);
67 cls.def(py::init<double, double, double>(), "x"_a, "y"_a, "z"_a);
68 cls.def(py::init<LonLat const &>(), "lonLat"_a);
69 cls.def(py::init<Angle, Angle>(), "lon"_a, "lat"_a);
70
71 cls.def("__eq__", &UnitVector3d::operator==, py::is_operator());
72 cls.def("__ne__", &UnitVector3d::operator!=, py::is_operator());
73 cls.def("__neg__",
74 (UnitVector3d(UnitVector3d::*)() const) & UnitVector3d::operator-);
75 cls.def("__add__", &UnitVector3d::operator+, py::is_operator());
76 cls.def("__sub__",
77 (Vector3d(UnitVector3d::*)(Vector3d const &) const) &
78 UnitVector3d::operator-,
79 py::is_operator());
80 cls.def("__mul__", &UnitVector3d::operator*, py::is_operator());
81 cls.def("__truediv__", &UnitVector3d::operator/, py::is_operator());
82
83 cls.def("x", &UnitVector3d::x);
84 cls.def("y", &UnitVector3d::y);
85 cls.def("z", &UnitVector3d::z);
86 cls.def("x", &UnitVector3d::dot);
87 cls.def("dot", &UnitVector3d::dot);
88 cls.def("cross", &UnitVector3d::cross);
89 cls.def("robustCross", &UnitVector3d::robustCross);
90 cls.def("cwiseProduct", &UnitVector3d::cwiseProduct);
91 cls.def("rotatedAround", &UnitVector3d::rotatedAround, "axis"_a, "angle"_a);
92
93 cls.def("__len__", [](UnitVector3d const &self) { return py::int_(3); });
94 cls.def("__getitem__", [](UnitVector3d const &self, py::int_ i) {
95 return self(python::convertIndex(3, i));
96 });
97
98 cls.def("__str__", [](UnitVector3d const &self) {
99 return py::str("[{!s}, {!s}, {!s}]")
100 .format(self.x(), self.y(), self.z());
101 });
102 cls.def("__repr__", [](UnitVector3d const &self) {
103 return py::str("UnitVector3d({!r}, {!r}, {!r})")
104 .format(self.x(), self.y(), self.z());
105 });
106
107 // Do not implement __reduce__ for pickling. Why? Given:
108 //
109 // u = UnitVector3d(x, y, z)
110 // v = UnitVector3d(u.x(), u.y(), u.z())
111 //
112 // u may not be identical to v, since the constructor normalizes its input
113 // components. Furthermore, UnitVector3d::fromNormalized is not visible to
114 // Python, and even if it were, pybind11 is currently incapable of returning
115 // a picklable reference to it.
116 cls.def(py::pickle([](UnitVector3d const &self) { return py::make_tuple(self.x(), self.y(), self.z()); },
117 [](py::tuple t) {
118 if (t.size() != 3) {
119 throw std::runtime_error("Tuple size = " + std::to_string(t.size()) +
120 "; must be 3 for a UnitVector3d");
121 }
123 t[0].cast<double>(), t[1].cast<double>(), t[2].cast<double>()));
124 }));
125}
126
127} // sphgeom
128} // lsst
double x
This file contains a class representing spherical coordinates.
double z
Definition: Match.cc:44
int y
Definition: SpanSet.cc:48
This file declares a class for representing unit vectors in ℝ³.
This file declares a class for representing vectors in ℝ³.
NormalizedAngle is an angle that lies in the range [0, 2π), with one exception - a NormalizedAngle ca...
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
static UnitVector3d Z()
Definition: UnitVector3d.h:101
double dot(Vector3d const &v) const
dot returns the inner product of this unit vector and v.
Definition: UnitVector3d.h:152
Vector3d robustCross(UnitVector3d const &v) const
a.robustCross(b) is (b + a).cross(b - a) - twice the cross product of a and b.
Definition: UnitVector3d.h:161
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this unit vector and v.
Definition: UnitVector3d.h:187
static UnitVector3d fromNormalized(Vector3d const &v)
fromNormalized returns the unit vector equal to v, which is assumed to be normalized.
Definition: UnitVector3d.h:82
UnitVector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this unit vector, rotated around the unit vector k by angle a accordi...
Definition: UnitVector3d.h:193
static UnitVector3d Y()
Definition: UnitVector3d.h:97
static UnitVector3d X()
Definition: UnitVector3d.h:93
static UnitVector3d orthogonalTo(Vector3d const &v)
orthogonalTo returns an arbitrary unit vector that is orthogonal to v.
Definition: UnitVector3d.cc:34
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this unit vector and v.
Definition: UnitVector3d.h:155
static UnitVector3d northFrom(Vector3d const &v)
northFrom returns the unit vector orthogonal to v that points "north" from v.
Definition: UnitVector3d.cc:51
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
ptrdiff_t convertIndex(ptrdiff_t len, pybind11::int_ i)
Convert a Python index i over a sequence with length len to a non-negative (C++ style) index,...
Definition: utils.h:40
void defineClass(Pybind11Class &cls)
A base class for image defects.
This file declares a class for representing angles.
T to_string(T... args)