LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
Vector3d.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2015 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
25
27
28#if !defined(NO_SIMD) && defined(__x86_64__)
29 #include <x86intrin.h>
30#endif
31#include <cstdio>
32#include <ostream>
33
34#include "lsst/sphgeom/Angle.h"
36
37
38namespace lsst {
39namespace sphgeom {
40
42 static constexpr uint8_t UNUSED = 255;
43 // Given a 3 component vector (x, y, z), this LUT provides the indexes
44 // of the components in order of smallest absolute value to largest.
45 // The index into the LUT must be computed as:
46 //
47 // ((|x| > |z|) << 2) +
48 // ((|x| > |y|) << 1) +
49 // (|y| > |z|)
50 static uint8_t const COMPONENT[8][4] = {
51 {0, 1, 2, UNUSED},
52 {0, 2, 1, UNUSED},
53 {1, 0, 2, UNUSED},
54 {UNUSED, UNUSED, UNUSED, UNUSED},
55 {UNUSED, UNUSED, UNUSED, UNUSED},
56 {2, 0, 1, UNUSED},
57 {1, 2, 0, UNUSED},
58 {2, 1, 0, UNUSED}
59 };
60#if defined(NO_SIMD) || !defined(__x86_64__)
61 double ax = std::fabs(_v[0]);
62 double ay = std::fabs(_v[1]);
63 double az = std::fabs(_v[2]);
64 int index = ((ax > az) << 2) +
65 ((ax > ay) << 1) +
66 (ay > az);
67 double w = _v[COMPONENT[index][2]];
68 if (w == 0.0) {
69 throw std::runtime_error("Cannot normalize zero vector");
70 }
71 // Divide components by the absolute value of the largest
72 // component to avoid overflow/underflow.
73 double maxabs = std::fabs(w);
74 double u = _v[COMPONENT[index][0]] / maxabs;
75 double v = _v[COMPONENT[index][1]] / maxabs;
76 w = std::copysign(1.0, w);
77 double d = u * u + v * v;
78 double norm = std::sqrt(1.0 + d);
79 _v[COMPONENT[index][0]] = u / norm;
80 _v[COMPONENT[index][1]] = v / norm;
81 _v[COMPONENT[index][2]] = w / norm;
82 return norm * maxabs;
83#else
84 static __m128d const m0m0 = _mm_set_pd(-0.0, -0.0);
85 __m128d ayaz = _mm_andnot_pd(m0m0, _mm_loadu_pd(_v + 1));
86 __m128d axax = _mm_andnot_pd(m0m0, _mm_set1_pd(_v[0]));
87 __m128d az = _mm_unpackhi_pd(ayaz, _mm_setzero_pd());
88 int index = (_mm_movemask_pd(_mm_cmpgt_pd(axax, ayaz)) << 1) |
89 _mm_movemask_pd(_mm_cmplt_sd(az, ayaz));
90 // The lower double in uv contains the vector component
91 // with the lowest absolute value. The higher double contains
92 // the component with absolute value betweem the lowest and
93 // highest absolute values.
94 __m128d uv = _mm_set_pd(_v[COMPONENT[index][1]],
95 _v[COMPONENT[index][0]]);
96 // ww contains two copies of the vector component with the
97 // highest absolute value.
98 __m128d ww = _mm_set1_pd(_v[COMPONENT[index][2]]);
99 __m128d maxabs = _mm_andnot_pd(m0m0, ww);
100 if (_mm_ucomieq_sd(ww, _mm_setzero_pd())) {
101 throw std::runtime_error("Cannot normalize zero vector");
102 }
103 // Divide components by the absolute value of the largest
104 // component to avoid overflow/underflow.
105 uv = _mm_div_pd(uv, maxabs);
106 ww = _mm_or_pd(_mm_and_pd(m0m0, ww), _mm_set1_pd(1.0));
107 __m128d norm = _mm_mul_pd(uv, uv);
108 norm = _mm_sqrt_sd(
109 _mm_setzero_pd(),
110 _mm_add_sd(
111 _mm_set_sd(1.0),
112 _mm_add_sd(norm, _mm_unpackhi_pd(norm, _mm_setzero_pd()))
113 )
114 );
115 // Normalize components and store the results.
116 ww = _mm_div_sd(ww, norm);
117 uv = _mm_div_pd(uv, _mm_shuffle_pd(norm, norm, 0));
118 _mm_store_sd(&_v[COMPONENT[index][0]], uv);
119 _mm_storeh_pd(&_v[COMPONENT[index][1]], uv);
120 _mm_store_sd(&_v[COMPONENT[index][2]], ww);
121 return _mm_cvtsd_f64(_mm_mul_sd(norm, maxabs));
122#endif
123}
124
126 // Use Rodrigues' rotation formula.
127 Vector3d const & v = *this;
128 double s = sin(a);
129 double c = cos(a);
130 return v * c + k.cross(v) * s + k * (k.dot(v) * (1.0 - c));
131}
132
134 char buf[128];
135 std::snprintf(buf, sizeof(buf), "[%.17g, %.17g, %.17g]",
136 v.x(), v.y(), v.z());
137 return os << buf;
138}
139
140}} // namespace lsst::sphgeom
std::ostream * os
Definition: Schema.cc:557
table::Key< int > a
This file declares a class for representing unit vectors in ℝ³.
This file declares a class for representing vectors in ℝ³.
Angle represents an angle in radians.
Definition: Angle.h:43
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
double dot(Vector3d const &v) const
dot returns the inner product of this unit vector and v.
Definition: UnitVector3d.h:152
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this unit vector and v.
Definition: UnitVector3d.h:155
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
Vector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this vector, rotated around the unit vector k by angle a according to...
Definition: Vector3d.cc:125
double x() const
Definition: Vector3d.h:66
double y() const
Definition: Vector3d.h:68
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition: Vector3d.cc:41
double z() const
Definition: Vector3d.h:70
T copysign(T... args)
T fabs(T... args)
T snprintf(T... args)
T norm(const T &x)
Definition: Integrate.h:160
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
double sin(Angle const &a)
Definition: Angle.h:102
double cos(Angle const &a)
Definition: Angle.h:103
A base class for image defects.
This file declares a class for representing angles.
T sqrt(T... args)
double w
Definition: CoaddPsf.cc:69