23from scipy.stats
import median_abs_deviation
as sigmaMad
24import astropy.units
as units
25from astropy.time
import Time
26from astropy.coordinates
import AltAz, SkyCoord, EarthLocation
34from lsst.utils.timer
import timeMethod
37__all__ = (
"ComputeExposureSummaryStatsTask",
"ComputeExposureSummaryStatsConfig")
41 """Config for ComputeExposureSummaryTask"""
42 sigmaClip = pexConfig.Field(
44 doc=
"Sigma for outlier rejection for sky noise.",
47 clipIter = pexConfig.Field(
49 doc=
"Number of iterations of outlier rejection for sky noise.",
52 badMaskPlanes = pexConfig.ListField(
54 doc=
"Mask planes that, if set, the associated pixel should not be included sky noise calculation.",
55 default=(
"NO_DATA",
"SUSPECT"),
57 starSelection = pexConfig.Field(
58 doc=
"Field to select sources to be used in the PSF statistics computation.",
60 default=
"calib_psf_used"
62 starShape = pexConfig.Field(
63 doc=
"Base name of columns to use for the source shape in the PSF statistics computation.",
65 default=
"base_SdssShape"
67 psfShape = pexConfig.Field(
68 doc=
"Base name of columns to use for the PSF shape in the PSF statistics computation.",
70 default=
"base_SdssShape_psf"
75 """Task to compute exposure summary statistics.
77 This task computes various quantities suitable for DPDD
and other
78 downstream processing at the detector centers, including:
96 These additional quantities are computed
from the stars
in the detector:
97 - psfStarDeltaE1Median
98 - psfStarDeltaE2Median
99 - psfStarDeltaE1Scatter
100 - psfStarDeltaE2Scatter
101 - psfStarDeltaSizeMedian
102 - psfStarDeltaSizeScatter
103 - psfStarScaledDeltaSizeScatter
105 ConfigClass = ComputeExposureSummaryStatsConfig
106 _DefaultName = "computeExposureSummaryStats"
109 def run(self, exposure, sources, background):
110 """Measure exposure statistics from the exposure, sources, and background.
114 exposure : `lsst.afw.image.ExposureF`
120 summary : `lsst.afw.image.ExposureSummary`
122 self.log.info("Measuring exposure statistics")
124 bbox = exposure.getBBox()
126 psf = exposure.getPsf()
128 shape = psf.computeShape(bbox.getCenter())
129 psfSigma = shape.getDeterminantRadius()
130 psfIxx = shape.getIxx()
131 psfIyy = shape.getIyy()
132 psfIxy = shape.getIxy()
133 im = psf.computeKernelImage(bbox.getCenter())
138 psfArea = np.sum(im.array)/np.sum(im.array**2.)
146 wcs = exposure.getWcs()
149 raCorners = [
float(sph.getRa().asDegrees())
for sph
in sph_pts]
150 decCorners = [
float(sph.getDec().asDegrees())
for sph
in sph_pts]
152 sph_pt = wcs.pixelToSky(bbox.getCenter())
153 ra = sph_pt.getRa().asDegrees()
154 decl = sph_pt.getDec().asDegrees()
156 raCorners = [
float(np.nan)]*4
157 decCorners = [
float(np.nan)]*4
161 photoCalib = exposure.getPhotoCalib()
162 if photoCalib
is not None:
163 zeroPoint = 2.5*np.log10(photoCalib.getInstFluxAtZeroMagnitude())
167 visitInfo = exposure.getInfo().getVisitInfo()
168 date = visitInfo.getDate()
174 observatory = visitInfo.getObservatory()
175 loc = EarthLocation(lat=observatory.getLatitude().asDegrees()*units.deg,
176 lon=observatory.getLongitude().asDegrees()*units.deg,
177 height=observatory.getElevation()*units.m)
178 obstime = Time(visitInfo.getDate().get(system=DateTime.MJD),
179 location=loc, format=
'mjd')
180 coord = SkyCoord(ra*units.degree, decl*units.degree, obstime=obstime, location=loc)
181 with warnings.catch_warnings():
182 warnings.simplefilter(
'ignore')
183 altaz = coord.transform_to(AltAz)
185 zenithDistance = 90.0 - altaz.alt.degree
187 zenithDistance = np.nan
189 if background
is not None:
190 bgStats = (bg[0].getStatsImage().getImage().array
191 for bg
in background)
192 skyBg = sum(np.median(bg[np.isfinite(bg)])
for bg
in bgStats)
197 statsCtrl.setNumSigmaClip(self.config.sigmaClip)
198 statsCtrl.setNumIter(self.config.clipIter)
199 statsCtrl.setAndMask(afwImage.Mask.getPlaneBitMask(self.config.badMaskPlanes))
200 statsCtrl.setNanSafe(
True)
204 skyNoise, _ = statObj.getResult(afwMath.STDEVCLIP)
207 exposure.getMaskedImage().getMask(),
208 afwMath.MEANCLIP, statsCtrl)
209 meanVar, _ = statObj.getResult(afwMath.MEANCLIP)
211 md = exposure.getMetadata()
212 if 'SFM_ASTROM_OFFSET_MEAN' in md:
213 astromOffsetMean = md[
'SFM_ASTROM_OFFSET_MEAN']
214 astromOffsetStd = md[
'SFM_ASTROM_OFFSET_STD']
216 astromOffsetMean = np.nan
217 astromOffsetStd = np.nan
224 psfSigma=
float(psfSigma),
225 psfArea=
float(psfArea),
226 psfIxx=
float(psfIxx),
227 psfIyy=
float(psfIyy),
228 psfIxy=
float(psfIxy),
231 zenithDistance=
float(zenithDistance),
232 zeroPoint=
float(zeroPoint),
234 skyNoise=
float(skyNoise),
235 meanVar=
float(meanVar),
237 decCorners=decCorners,
238 astromOffsetMean=astromOffsetMean,
239 astromOffsetStd=astromOffsetStd,
240 nPsfStar=psfStats.nPsfStar,
241 psfStarDeltaE1Median=psfStats.psfStarDeltaE1Median,
242 psfStarDeltaE2Median=psfStats.psfStarDeltaE2Median,
243 psfStarDeltaE1Scatter=psfStats.psfStarDeltaE1Scatter,
244 psfStarDeltaE2Scatter=psfStats.psfStarDeltaE2Scatter,
245 psfStarDeltaSizeMedian=psfStats.psfStarDeltaSizeMedian,
246 psfStarDeltaSizeScatter=psfStats.psfStarDeltaSizeScatter,
247 psfStarScaledDeltaSizeScatter=psfStats.psfStarScaledDeltaSizeScatter
252 def _computePsfStats(self, sources):
253 """Compute psf residual statistics.
255 All residuals are computed using median statistics on the difference
256 between the sources and the models.
261 Source catalog on which to measure the PSF statistics.
265 psfStats : `lsst.pipe.base.Struct`
266 Struct
with various psf stats.
268 psfStats = pipeBase.Struct(nPsfStar=0,
269 psfStarDeltaE1Median=float(np.nan),
270 psfStarDeltaE2Median=float(np.nan),
271 psfStarDeltaE1Scatter=float(np.nan),
272 psfStarDeltaE2Scatter=float(np.nan),
273 psfStarDeltaSizeMedian=float(np.nan),
274 psfStarDeltaSizeScatter=float(np.nan),
275 psfStarScaledDeltaSizeScatter=float(np.nan))
281 names = sources.schema.getNames()
282 if self.config.starSelection
not in names
or self.config.starShape +
'_flag' not in names:
286 mask = sources[self.config.starSelection] & (~sources[self.config.starShape +
'_flag'])
287 nPsfStar = mask.sum()
294 starXX = sources[self.config.starShape +
'_xx'][mask]
295 starYY = sources[self.config.starShape +
'_yy'][mask]
296 starXY = sources[self.config.starShape +
'_xy'][mask]
297 psfXX = sources[self.config.psfShape +
'_xx'][mask]
298 psfYY = sources[self.config.psfShape +
'_yy'][mask]
299 psfXY = sources[self.config.psfShape +
'_xy'][mask]
301 starSize = (starXX*starYY - starXY**2.)**0.25
302 starE1 = (starXX - starYY)/(starXX + starYY)
303 starE2 = 2*starXY/(starXX + starYY)
304 starSizeMedian = np.median(starSize)
306 psfSize = (psfXX*psfYY - psfXY**2)**0.25
307 psfE1 = (psfXX - psfYY)/(psfXX + psfYY)
308 psfE2 = 2*psfXY/(psfXX + psfYY)
310 psfStarDeltaE1Median = np.median(starE1 - psfE1)
311 psfStarDeltaE1Scatter =
sigmaMad(starE1 - psfE1, scale=
'normal')
312 psfStarDeltaE2Median = np.median(starE2 - psfE2)
313 psfStarDeltaE2Scatter =
sigmaMad(starE2 - psfE2, scale=
'normal')
315 psfStarDeltaSizeMedian = np.median(starSize - psfSize)
316 psfStarDeltaSizeScatter =
sigmaMad(starSize - psfSize, scale=
'normal')
317 psfStarScaledDeltaSizeScatter = psfStarDeltaSizeScatter/starSizeMedian**2.
319 psfStats.nPsfStar =
int(nPsfStar)
320 psfStats.psfStarDeltaE1Median =
float(psfStarDeltaE1Median)
321 psfStats.psfStarDeltaE2Median =
float(psfStarDeltaE2Median)
322 psfStats.psfStarDeltaE1Scatter =
float(psfStarDeltaE1Scatter)
323 psfStats.psfStarDeltaE2Scatter =
float(psfStarDeltaE2Scatter)
324 psfStats.psfStarDeltaSizeMedian =
float(psfStarDeltaSizeMedian)
325 psfStats.psfStarDeltaSizeScatter =
float(psfStarDeltaSizeScatter)
326 psfStats.psfStarScaledDeltaSizeScatter =
float(psfStarScaledDeltaSizeScatter)
Pass parameters to a Statistics object.
A floating-point coordinate rectangle geometry.
def run(self, exposure, sources, background)
def _computePsfStats(self, sources)
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)