25 from scipy
import ndimage
30 from lsst.daf.butler
import DeferredDatasetHandle
34 import lsst.pex.config
as pexConfig
37 from .assembleCoadd
import (AssembleCoaddTask,
38 CompareWarpAssembleCoaddConfig,
39 CompareWarpAssembleCoaddTask)
40 from .coaddBase
import makeSkyInfo
41 from .measurePsf
import MeasurePsfTask
43 __all__ = [
"DcrAssembleCoaddConnections",
"DcrAssembleCoaddTask",
"DcrAssembleCoaddConfig"]
47 dimensions=(
"tract",
"patch",
"abstract_filter",
"skymap"),
48 defaultTemplates={
"inputCoaddName":
"deep",
49 "outputCoaddName":
"dcr",
53 inputWarps = pipeBase.connectionTypes.Input(
54 doc=(
"Input list of warps to be assembled i.e. stacked."
55 "WarpType (e.g. direct, psfMatched) is controlled by the warpType config parameter"),
56 name=
"{inputCoaddName}Coadd_{warpType}Warp",
57 storageClass=
"ExposureF",
58 dimensions=(
"tract",
"patch",
"skymap",
"visit",
"instrument"),
62 skyMap = pipeBase.connectionTypes.Input(
63 doc=
"Input definition of geometry/bbox and projection/wcs for coadded exposures",
64 name=
"{inputCoaddName}Coadd_skyMap",
65 storageClass=
"SkyMap",
66 dimensions=(
"skymap", ),
68 brightObjectMask = pipeBase.connectionTypes.PrerequisiteInput(
69 doc=(
"Input Bright Object Mask mask produced with external catalogs to be applied to the mask plane"
71 name=
"brightObjectMask",
72 storageClass=
"ObjectMaskCatalog",
73 dimensions=(
"tract",
"patch",
"skymap",
"abstract_filter"),
75 templateExposure = pipeBase.connectionTypes.Input(
76 doc=
"Input coadded exposure, produced by previous call to AssembleCoadd",
77 name=
"{fakesType}{inputCoaddName}Coadd{warpTypeSuffix}",
78 storageClass=
"ExposureF",
79 dimensions=(
"tract",
"patch",
"skymap",
"abstract_filter"),
81 dcrCoadds = pipeBase.connectionTypes.Output(
82 doc=
"Output coadded exposure, produced by stacking input warps",
83 name=
"{fakesType}{outputCoaddName}Coadd{warpTypeSuffix}",
84 storageClass=
"ExposureF",
85 dimensions=(
"tract",
"patch",
"skymap",
"abstract_filter",
"subfilter"),
88 dcrNImages = pipeBase.connectionTypes.Output(
89 doc=
"Output image of number of input images per pixel",
90 name=
"{outputCoaddName}Coadd_nImage",
91 storageClass=
"ImageU",
92 dimensions=(
"tract",
"patch",
"skymap",
"abstract_filter",
"subfilter"),
96 def __init__(self, *, config=None):
97 super().__init__(config=config)
98 if not config.doWrite:
99 self.outputs.remove(
"dcrCoadds")
103 pipelineConnections=DcrAssembleCoaddConnections):
104 dcrNumSubfilters = pexConfig.Field(
106 doc=
"Number of sub-filters to forward model chromatic effects to fit the supplied exposures.",
109 maxNumIter = pexConfig.Field(
112 doc=
"Maximum number of iterations of forward modeling.",
115 minNumIter = pexConfig.Field(
118 doc=
"Minimum number of iterations of forward modeling.",
121 convergenceThreshold = pexConfig.Field(
123 doc=
"Target relative change in convergence between iterations of forward modeling.",
126 useConvergence = pexConfig.Field(
128 doc=
"Use convergence test as a forward modeling end condition?"
129 "If not set, skips calculating convergence and runs for ``maxNumIter`` iterations",
132 baseGain = pexConfig.Field(
135 doc=
"Relative weight to give the new solution vs. the last solution when updating the model."
136 "A value of 1.0 gives equal weight to both solutions."
137 "Small values imply slower convergence of the solution, but can "
138 "help prevent overshooting and failures in the fit."
139 "If ``baseGain`` is None, a conservative gain "
140 "will be calculated from the number of subfilters. ",
143 useProgressiveGain = pexConfig.Field(
145 doc=
"Use a gain that slowly increases above ``baseGain`` to accelerate convergence? "
146 "When calculating the next gain, we use up to 5 previous gains and convergence values."
147 "Can be set to False to force the model to change at the rate of ``baseGain``. ",
150 doAirmassWeight = pexConfig.Field(
152 doc=
"Weight exposures by airmass? Useful if there are relatively few high-airmass observations.",
155 modelWeightsWidth = pexConfig.Field(
157 doc=
"Width of the region around detected sources to include in the DcrModel.",
160 useModelWeights = pexConfig.Field(
162 doc=
"Width of the region around detected sources to include in the DcrModel.",
165 splitSubfilters = pexConfig.Field(
167 doc=
"Calculate DCR for two evenly-spaced wavelengths in each subfilter."
168 "Instead of at the midpoint",
171 splitThreshold = pexConfig.Field(
173 doc=
"Minimum DCR difference within a subfilter to use ``splitSubfilters``, in pixels."
174 "Set to 0 to always split the subfilters.",
177 regularizeModelIterations = pexConfig.Field(
179 doc=
"Maximum relative change of the model allowed between iterations."
180 "Set to zero to disable.",
183 regularizeModelFrequency = pexConfig.Field(
185 doc=
"Maximum relative change of the model allowed between subfilters."
186 "Set to zero to disable.",
189 convergenceMaskPlanes = pexConfig.ListField(
191 default=[
"DETECTED"],
192 doc=
"Mask planes to use to calculate convergence."
194 regularizationWidth = pexConfig.Field(
197 doc=
"Minimum radius of a region to include in regularization, in pixels."
199 imageInterpOrder = pexConfig.Field(
201 doc=
"The order of the spline interpolation used to shift the image plane.",
204 accelerateModel = pexConfig.Field(
206 doc=
"Factor to amplify the differences between model planes by to speed convergence.",
209 doCalculatePsf = pexConfig.Field(
211 doc=
"Set to detect stars and recalculate the PSF from the final coadd."
212 "Otherwise the PSF is estimated from a selection of the best input exposures",
215 detectPsfSources = pexConfig.ConfigurableField(
216 target=measAlg.SourceDetectionTask,
217 doc=
"Task to detect sources for PSF measurement, if ``doCalculatePsf`` is set.",
219 measurePsfSources = pexConfig.ConfigurableField(
220 target=SingleFrameMeasurementTask,
221 doc=
"Task to measure sources for PSF measurement, if ``doCalculatePsf`` is set."
223 measurePsf = pexConfig.ConfigurableField(
224 target=MeasurePsfTask,
225 doc=
"Task to measure the PSF of the coadd, if ``doCalculatePsf`` is set.",
229 CompareWarpAssembleCoaddConfig.setDefaults(self)
230 self.assembleStaticSkyModel.retarget(CompareWarpAssembleCoaddTask)
232 self.assembleStaticSkyModel.warpType = self.warpType
234 self.assembleStaticSkyModel.doNImage =
False
235 self.assembleStaticSkyModel.doWrite =
False
236 self.detectPsfSources.returnOriginalFootprints =
False
237 self.detectPsfSources.thresholdPolarity =
"positive"
239 self.detectPsfSources.thresholdValue = 50
240 self.detectPsfSources.nSigmaToGrow = 2
242 self.detectPsfSources.minPixels = 25
244 self.detectPsfSources.thresholdType =
"pixel_stdev"
247 self.measurePsf.starSelector[
"objectSize"].doFluxLimit =
False
251 """Assemble DCR coadded images from a set of warps.
256 The number of pixels to grow each subregion by to allow for DCR.
260 As with AssembleCoaddTask, we want to assemble a coadded image from a set of
261 Warps (also called coadded temporary exposures), including the effects of
262 Differential Chromatic Refraction (DCR).
263 For full details of the mathematics and algorithm, please see
264 DMTN-037: DCR-matched template generation (https://dmtn-037.lsst.io).
266 This Task produces a DCR-corrected deepCoadd, as well as a dcrCoadd for
267 each subfilter used in the iterative calculation.
268 It begins by dividing the bandpass-defining filter into N equal bandwidth
269 "subfilters", and divides the flux in each pixel from an initial coadd
270 equally into each as a "dcrModel". Because the airmass and parallactic
271 angle of each individual exposure is known, we can calculate the shift
272 relative to the center of the band in each subfilter due to DCR. For each
273 exposure we apply this shift as a linear transformation to the dcrModels
274 and stack the results to produce a DCR-matched exposure. The matched
275 exposures are subtracted from the input exposures to produce a set of
276 residual images, and these residuals are reverse shifted for each
277 exposures' subfilters and stacked. The shifted and stacked residuals are
278 added to the dcrModels to produce a new estimate of the flux in each pixel
279 within each subfilter. The dcrModels are solved for iteratively, which
280 continues until the solution from a new iteration improves by less than
281 a set percentage, or a maximum number of iterations is reached.
282 Two forms of regularization are employed to reduce unphysical results.
283 First, the new solution is averaged with the solution from the previous
284 iteration, which mitigates oscillating solutions where the model
285 overshoots with alternating very high and low values.
286 Second, a common degeneracy when the data have a limited range of airmass or
287 parallactic angle values is for one subfilter to be fit with very low or
288 negative values, while another subfilter is fit with very high values. This
289 typically appears in the form of holes next to sources in one subfilter,
290 and corresponding extended wings in another. Because each subfilter has
291 a narrow bandwidth we assume that physical sources that are above the noise
292 level will not vary in flux by more than a factor of `frequencyClampFactor`
293 between subfilters, and pixels that have flux deviations larger than that
294 factor will have the excess flux distributed evenly among all subfilters.
295 If `splitSubfilters` is set, then each subfilter will be further sub-
296 divided during the forward modeling step (only). This approximates using
297 a higher number of subfilters that may be necessary for high airmass
298 observations, but does not increase the number of free parameters in the
299 fit. This is needed when there are high airmass observations which would
300 otherwise have significant DCR even within a subfilter. Because calculating
301 the shifted images takes most of the time, splitting the subfilters is
302 turned off by way of the `splitThreshold` option for low-airmass
303 observations that do not suffer from DCR within a subfilter.
306 ConfigClass = DcrAssembleCoaddConfig
307 _DefaultName =
"dcrAssembleCoadd"
309 def __init__(self, *args, **kwargs):
310 super().__init__(*args, **kwargs)
311 if self.config.doCalculatePsf:
312 self.schema = afwTable.SourceTable.makeMinimalSchema()
313 self.makeSubtask(
"detectPsfSources", schema=self.schema)
314 self.makeSubtask(
"measurePsfSources", schema=self.schema)
315 self.makeSubtask(
"measurePsf", schema=self.schema)
317 @utils.inheritDoc(pipeBase.PipelineTask)
318 def runQuantum(self, butlerQC, inputRefs, outputRefs):
323 Assemble a coadd from a set of Warps.
325 PipelineTask (Gen3) entry point to Coadd a set of Warps.
326 Analogous to `runDataRef`, it prepares all the data products to be
327 passed to `run`, and processes the results before returning a struct
328 of results to be written out. AssembleCoadd cannot fit all Warps in memory.
329 Therefore, its inputs are accessed subregion by subregion
330 by the Gen3 `DeferredDatasetHandle` that is analagous to the Gen2
331 `lsst.daf.persistence.ButlerDataRef`. Any updates to this method should
332 correspond to an update in `runDataRef` while both entry points
335 inputData = butlerQC.get(inputRefs)
339 skyMap = inputData[
"skyMap"]
340 outputDataId = butlerQC.quantum.dataId
343 tractId=outputDataId[
'tract'],
344 patchId=outputDataId[
'patch'])
348 warpRefList = inputData[
'inputWarps']
350 inputs = self.prepareInputs(warpRefList)
351 self.log.
info(
"Found %d %s", len(inputs.tempExpRefList),
352 self.getTempExpDatasetName(self.warpType))
353 if len(inputs.tempExpRefList) == 0:
354 self.log.
warn(
"No coadd temporary exposures found")
357 supplementaryData = self.makeSupplementaryDataGen3(butlerQC, inputRefs, outputRefs)
358 retStruct = self.run(inputData[
'skyInfo'], inputs.tempExpRefList, inputs.imageScalerList,
359 inputs.weightList, supplementaryData=supplementaryData)
361 inputData.setdefault(
'brightObjectMask',
None)
362 for subfilter
in range(self.config.dcrNumSubfilters):
364 retStruct.dcrCoadds[subfilter].setPsf(retStruct.coaddExposure.getPsf())
365 self.processResults(retStruct.dcrCoadds[subfilter], inputData[
'brightObjectMask'], outputDataId)
367 if self.config.doWrite:
368 butlerQC.put(retStruct, outputRefs)
372 def runDataRef(self, dataRef, selectDataList=None, warpRefList=None):
373 """Assemble a coadd from a set of warps.
375 Coadd a set of Warps. Compute weights to be applied to each Warp and
376 find scalings to match the photometric zeropoint to a reference Warp.
377 Assemble the Warps using run method.
378 Forward model chromatic effects across multiple subfilters,
379 and subtract from the input Warps to build sets of residuals.
380 Use the residuals to construct a new ``DcrModel`` for each subfilter,
381 and iterate until the model converges.
382 Interpolate over NaNs and optionally write the coadd to disk.
383 Return the coadded exposure.
387 dataRef : `lsst.daf.persistence.ButlerDataRef`
388 Data reference defining the patch for coaddition and the
390 selectDataList : `list` of `lsst.daf.persistence.ButlerDataRef`
391 List of data references to warps. Data to be coadded will be
392 selected from this list based on overlap with the patch defined by
397 results : `lsst.pipe.base.Struct`
398 The Struct contains the following fields:
400 - ``coaddExposure``: coadded exposure (`lsst.afw.image.Exposure`)
401 - ``nImage``: exposure count image (`lsst.afw.image.ImageU`)
402 - ``dcrCoadds``: `list` of coadded exposures for each subfilter
403 - ``dcrNImages``: `list` of exposure count images for each subfilter
405 if (selectDataList
is None and warpRefList
is None)
or (selectDataList
and warpRefList):
406 raise RuntimeError(
"runDataRef must be supplied either a selectDataList or warpRefList")
408 skyInfo = self.getSkyInfo(dataRef)
409 if warpRefList
is None:
410 calExpRefList = self.selectExposures(dataRef, skyInfo, selectDataList=selectDataList)
411 if len(calExpRefList) == 0:
412 self.log.
warn(
"No exposures to coadd")
414 self.log.
info(
"Coadding %d exposures", len(calExpRefList))
416 warpRefList = self.getTempExpRefList(dataRef, calExpRefList)
418 inputData = self.prepareInputs(warpRefList)
419 self.log.
info(
"Found %d %s", len(inputData.tempExpRefList),
420 self.getTempExpDatasetName(self.warpType))
421 if len(inputData.tempExpRefList) == 0:
422 self.log.
warn(
"No coadd temporary exposures found")
425 supplementaryData = self.makeSupplementaryData(dataRef, warpRefList=inputData.tempExpRefList)
427 results = self.run(skyInfo, inputData.tempExpRefList, inputData.imageScalerList,
428 inputData.weightList, supplementaryData=supplementaryData)
430 self.log.
warn(
"Could not construct DcrModel for patch %s: no data to coadd.",
431 skyInfo.patchInfo.getIndex())
434 if self.config.doCalculatePsf:
435 self.measureCoaddPsf(results.coaddExposure)
436 brightObjects = self.readBrightObjectMasks(dataRef)
if self.config.doMaskBrightObjects
else None
437 for subfilter
in range(self.config.dcrNumSubfilters):
439 results.dcrCoadds[subfilter].setPsf(results.coaddExposure.getPsf())
440 self.processResults(results.dcrCoadds[subfilter],
441 brightObjectMasks=brightObjects, dataId=dataRef.dataId)
442 if self.config.doWrite:
443 self.log.
info(
"Persisting dcrCoadd")
444 dataRef.put(results.dcrCoadds[subfilter],
"dcrCoadd", subfilter=subfilter,
445 numSubfilters=self.config.dcrNumSubfilters)
446 if self.config.doNImage
and results.dcrNImages
is not None:
447 dataRef.put(results.dcrNImages[subfilter],
"dcrCoadd_nImage", subfilter=subfilter,
448 numSubfilters=self.config.dcrNumSubfilters)
452 @utils.inheritDoc(AssembleCoaddTask)
454 """Load the previously-generated template coadd.
456 This can be removed entirely once we no longer support the Gen 2 butler.
460 templateCoadd : `lsst.pipe.base.Struct`
461 Result struct with components:
463 - ``templateCoadd``: coadded exposure (`lsst.afw.image.ExposureF`)
465 templateCoadd = butlerQC.get(inputRefs.templateExposure)
467 return pipeBase.Struct(templateCoadd=templateCoadd)
469 def measureCoaddPsf(self, coaddExposure):
470 """Detect sources on the coadd exposure and measure the final PSF.
474 coaddExposure : `lsst.afw.image.Exposure`
475 The final coadded exposure.
477 table = afwTable.SourceTable.make(self.schema)
478 detResults = self.detectPsfSources.
run(table, coaddExposure, clearMask=
False)
479 coaddSources = detResults.sources
480 self.measurePsfSources.
run(
481 measCat=coaddSources,
482 exposure=coaddExposure
489 psfResults = self.measurePsf.
run(coaddExposure, coaddSources)
490 except Exception
as e:
491 self.log.
warn(
"Unable to calculate PSF, using default coadd PSF: %s" % e)
493 coaddExposure.setPsf(psfResults.psf)
495 def prepareDcrInputs(self, templateCoadd, warpRefList, weightList):
496 """Prepare the DCR coadd by iterating through the visitInfo of the input warps.
498 Sets the property ``bufferSize``.
502 templateCoadd : `lsst.afw.image.ExposureF`
503 The initial coadd exposure before accounting for DCR.
504 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
505 `lsst.daf.persistence.ButlerDataRef`
506 The data references to the input warped exposures.
507 weightList : `list` of `float`
508 The weight to give each input exposure in the coadd
509 Will be modified in place if ``doAirmassWeight`` is set.
513 dcrModels : `lsst.pipe.tasks.DcrModel`
514 Best fit model of the true sky after correcting chromatic effects.
519 If ``lambdaMin`` is missing from the Mapper class of the obs package being used.
521 sigma2fwhm = 2.*np.sqrt(2.*np.log(2.))
522 filterInfo = templateCoadd.getFilter()
523 if np.isnan(filterInfo.getFilterProperty().getLambdaMin()):
524 raise NotImplementedError(
"No minimum/maximum wavelength information found"
525 " in the filter definition! Please add lambdaMin and lambdaMax"
526 " to the Mapper class in your obs package.")
527 tempExpName = self.getTempExpDatasetName(self.warpType)
532 for visitNum, warpExpRef
in enumerate(warpRefList):
533 if isinstance(warpExpRef, DeferredDatasetHandle):
535 visitInfo = warpExpRef.get(component=
"visitInfo")
536 psf = warpExpRef.get(component=
"psf")
539 visitInfo = warpExpRef.get(tempExpName +
"_visitInfo")
540 psf = warpExpRef.get(tempExpName).getPsf()
541 visit = warpExpRef.dataId[
"visit"]
542 psfSize = psf.computeShape().getDeterminantRadius()*sigma2fwhm
543 airmass = visitInfo.getBoresightAirmass()
544 parallacticAngle = visitInfo.getBoresightParAngle().asDegrees()
545 airmassDict[visit] = airmass
546 angleDict[visit] = parallacticAngle
547 psfSizeDict[visit] = psfSize
548 if self.config.doAirmassWeight:
549 weightList[visitNum] *= airmass
550 dcrShifts.append(np.max(np.abs(
calculateDcr(visitInfo, templateCoadd.getWcs(),
551 filterInfo, self.config.dcrNumSubfilters))))
552 self.log.
info(
"Selected airmasses:\n%s", airmassDict)
553 self.log.
info(
"Selected parallactic angles:\n%s", angleDict)
554 self.log.
info(
"Selected PSF sizes:\n%s", psfSizeDict)
555 self.bufferSize = int(np.ceil(np.max(dcrShifts)) + 1)
557 psf = self.selectCoaddPsf(templateCoadd, warpRefList)
558 except Exception
as e:
559 self.log.
warn(
"Unable to calculate restricted PSF, using default coadd PSF: %s" % e)
561 psf = templateCoadd.psf
562 dcrModels = DcrModel.fromImage(templateCoadd.maskedImage,
563 self.config.dcrNumSubfilters,
564 filterInfo=filterInfo,
568 def run(self, skyInfo, warpRefList, imageScalerList, weightList,
569 supplementaryData=None):
570 """Assemble the coadd.
572 Requires additional inputs Struct ``supplementaryData`` to contain a
573 ``templateCoadd`` that serves as the model of the static sky.
575 Find artifacts and apply them to the warps' masks creating a list of
576 alternative masks with a new "CLIPPED" plane and updated "NO_DATA" plane
577 Then pass these alternative masks to the base class's assemble method.
579 Divide the ``templateCoadd`` evenly between each subfilter of a
580 ``DcrModel`` as the starting best estimate of the true wavelength-
581 dependent sky. Forward model the ``DcrModel`` using the known
582 chromatic effects in each subfilter and calculate a convergence metric
583 based on how well the modeled template matches the input warps. If
584 the convergence has not yet reached the desired threshold, then shift
585 and stack the residual images to build a new ``DcrModel``. Apply
586 conditioning to prevent oscillating solutions between iterations or
589 Once the ``DcrModel`` reaches convergence or the maximum number of
590 iterations has been reached, fill the metadata for each subfilter
591 image and make them proper ``coaddExposure``s.
595 skyInfo : `lsst.pipe.base.Struct`
596 Patch geometry information, from getSkyInfo
597 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
598 `lsst.daf.persistence.ButlerDataRef`
599 The data references to the input warped exposures.
600 imageScalerList : `list` of `lsst.pipe.task.ImageScaler`
601 The image scalars correct for the zero point of the exposures.
602 weightList : `list` of `float`
603 The weight to give each input exposure in the coadd
604 supplementaryData : `lsst.pipe.base.Struct`
605 Result struct returned by ``makeSupplementaryData`` with components:
607 - ``templateCoadd``: coadded exposure (`lsst.afw.image.Exposure`)
611 result : `lsst.pipe.base.Struct`
612 Result struct with components:
614 - ``coaddExposure``: coadded exposure (`lsst.afw.image.Exposure`)
615 - ``nImage``: exposure count image (`lsst.afw.image.ImageU`)
616 - ``dcrCoadds``: `list` of coadded exposures for each subfilter
617 - ``dcrNImages``: `list` of exposure count images for each subfilter
619 minNumIter = self.config.minNumIter
or self.config.dcrNumSubfilters
620 maxNumIter = self.config.maxNumIter
or self.config.dcrNumSubfilters*3
621 templateCoadd = supplementaryData.templateCoadd
622 baseMask = templateCoadd.mask.clone()
625 baseVariance = templateCoadd.variance.clone()
626 baseVariance /= self.config.dcrNumSubfilters
627 spanSetMaskList = self.findArtifacts(templateCoadd, warpRefList, imageScalerList)
629 templateCoadd.setMask(baseMask)
630 badMaskPlanes = self.config.badMaskPlanes[:]
635 badPixelMask = templateCoadd.mask.getPlaneBitMask(badMaskPlanes)
637 stats = self.prepareStats(mask=badPixelMask)
638 dcrModels = self.prepareDcrInputs(templateCoadd, warpRefList, weightList)
639 if self.config.doNImage:
640 dcrNImages, dcrWeights = self.calculateNImage(dcrModels, skyInfo.bbox, warpRefList,
641 spanSetMaskList, stats.ctrl)
642 nImage = afwImage.ImageU(skyInfo.bbox)
646 for dcrNImage
in dcrNImages:
652 nSubregions = (
ceil(skyInfo.bbox.getHeight()/subregionSize[1])
653 *
ceil(skyInfo.bbox.getWidth()/subregionSize[0]))
655 for subBBox
in self._subBBoxIter(skyInfo.bbox, subregionSize):
658 self.log.
info(
"Computing coadd over patch %s subregion %s of %s: %s",
659 skyInfo.patchInfo.getIndex(), subIter, nSubregions, subBBox)
661 dcrBBox.grow(self.bufferSize)
662 dcrBBox.clip(dcrModels.bbox)
663 modelWeights = self.calculateModelWeights(dcrModels, dcrBBox)
664 subExposures = self.loadSubExposures(dcrBBox, stats.ctrl, warpRefList,
665 imageScalerList, spanSetMaskList)
666 convergenceMetric = self.calculateConvergence(dcrModels, subExposures, subBBox,
667 warpRefList, weightList, stats.ctrl)
668 self.log.
info(
"Initial convergence : %s", convergenceMetric)
669 convergenceList = [convergenceMetric]
671 convergenceCheck = 1.
672 refImage = templateCoadd.image
673 while (convergenceCheck > self.config.convergenceThreshold
or modelIter <= minNumIter):
674 gain = self.calculateGain(convergenceList, gainList)
675 self.dcrAssembleSubregion(dcrModels, subExposures, subBBox, dcrBBox, warpRefList,
676 stats.ctrl, convergenceMetric, gain,
677 modelWeights, refImage, dcrWeights)
678 if self.config.useConvergence:
679 convergenceMetric = self.calculateConvergence(dcrModels, subExposures, subBBox,
680 warpRefList, weightList, stats.ctrl)
681 if convergenceMetric == 0:
682 self.log.
warn(
"Coadd patch %s subregion %s had convergence metric of 0.0 which is "
683 "most likely due to there being no valid data in the region.",
684 skyInfo.patchInfo.getIndex(), subIter)
686 convergenceCheck = (convergenceList[-1] - convergenceMetric)/convergenceMetric
687 if (convergenceCheck < 0) & (modelIter > minNumIter):
688 self.log.
warn(
"Coadd patch %s subregion %s diverged before reaching maximum "
689 "iterations or desired convergence improvement of %s."
691 skyInfo.patchInfo.getIndex(), subIter,
692 self.config.convergenceThreshold, convergenceCheck)
694 convergenceList.append(convergenceMetric)
695 if modelIter > maxNumIter:
696 if self.config.useConvergence:
697 self.log.
warn(
"Coadd patch %s subregion %s reached maximum iterations "
698 "before reaching desired convergence improvement of %s."
699 " Final convergence improvement: %s",
700 skyInfo.patchInfo.getIndex(), subIter,
701 self.config.convergenceThreshold, convergenceCheck)
704 if self.config.useConvergence:
705 self.log.
info(
"Iteration %s with convergence metric %s, %.4f%% improvement (gain: %.2f)",
706 modelIter, convergenceMetric, 100.*convergenceCheck, gain)
709 if self.config.useConvergence:
710 self.log.
info(
"Coadd patch %s subregion %s finished with "
711 "convergence metric %s after %s iterations",
712 skyInfo.patchInfo.getIndex(), subIter, convergenceMetric, modelIter)
714 self.log.
info(
"Coadd patch %s subregion %s finished after %s iterations",
715 skyInfo.patchInfo.getIndex(), subIter, modelIter)
716 if self.config.useConvergence
and convergenceMetric > 0:
717 self.log.
info(
"Final convergence improvement was %.4f%% overall",
718 100*(convergenceList[0] - convergenceMetric)/convergenceMetric)
720 dcrCoadds = self.fillCoadd(dcrModels, skyInfo, warpRefList, weightList,
721 calibration=self.scaleZeroPoint.getPhotoCalib(),
722 coaddInputs=templateCoadd.getInfo().getCoaddInputs(),
724 variance=baseVariance)
725 coaddExposure = self.stackCoadd(dcrCoadds)
726 return pipeBase.Struct(coaddExposure=coaddExposure, nImage=nImage,
727 dcrCoadds=dcrCoadds, dcrNImages=dcrNImages)
729 def calculateNImage(self, dcrModels, bbox, warpRefList, spanSetMaskList, statsCtrl):
730 """Calculate the number of exposures contributing to each subfilter.
734 dcrModels : `lsst.pipe.tasks.DcrModel`
735 Best fit model of the true sky after correcting chromatic effects.
736 bbox : `lsst.geom.box.Box2I`
737 Bounding box of the patch to coadd.
738 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
739 `lsst.daf.persistence.ButlerDataRef`
740 The data references to the input warped exposures.
741 spanSetMaskList : `list` of `dict` containing spanSet lists, or None
742 Each element of the `dict` contains the new mask plane name
743 (e.g. "CLIPPED and/or "NO_DATA") as the key,
744 and the list of SpanSets to apply to the mask.
745 statsCtrl : `lsst.afw.math.StatisticsControl`
746 Statistics control object for coadd
750 dcrNImages : `list` of `lsst.afw.image.ImageU`
751 List of exposure count images for each subfilter
752 dcrWeights : `list` of `lsst.afw.image.ImageF`
753 Per-pixel weights for each subfilter.
754 Equal to 1/(number of unmasked images contributing to each pixel).
756 dcrNImages = [afwImage.ImageU(bbox)
for subfilter
in range(self.config.dcrNumSubfilters)]
757 dcrWeights = [afwImage.ImageF(bbox)
for subfilter
in range(self.config.dcrNumSubfilters)]
758 tempExpName = self.getTempExpDatasetName(self.warpType)
759 for warpExpRef, altMaskSpans
in zip(warpRefList, spanSetMaskList):
760 if isinstance(warpExpRef, DeferredDatasetHandle):
762 exposure = warpExpRef.get(parameters={
'bbox': bbox})
765 exposure = warpExpRef.get(tempExpName +
"_sub", bbox=bbox)
766 visitInfo = exposure.getInfo().getVisitInfo()
767 wcs = exposure.getInfo().getWcs()
769 if altMaskSpans
is not None:
770 self.applyAltMaskPlanes(mask, altMaskSpans)
771 weightImage = np.zeros_like(exposure.image.array)
772 weightImage[(mask.array & statsCtrl.getAndMask()) == 0] = 1.
775 weightsGenerator = self.dcrResiduals(weightImage, visitInfo, wcs, dcrModels.filter)
776 for shiftedWeights, dcrNImage, dcrWeight
in zip(weightsGenerator, dcrNImages, dcrWeights):
777 dcrNImage.array += np.rint(shiftedWeights).astype(dcrNImage.array.dtype)
778 dcrWeight.array += shiftedWeights
780 weightsThreshold = 1.
781 goodPix = dcrWeights[0].array > weightsThreshold
782 for weights
in dcrWeights[1:]:
783 goodPix = (weights.array > weightsThreshold) & goodPix
784 for subfilter
in range(self.config.dcrNumSubfilters):
785 dcrWeights[subfilter].array[goodPix] = 1./dcrWeights[subfilter].array[goodPix]
786 dcrWeights[subfilter].array[~goodPix] = 0.
787 dcrNImages[subfilter].array[~goodPix] = 0
788 return (dcrNImages, dcrWeights)
791 statsCtrl, convergenceMetric,
792 gain, modelWeights, refImage, dcrWeights):
793 """Assemble the DCR coadd for a sub-region.
795 Build a DCR-matched template for each input exposure, then shift the
796 residuals according to the DCR in each subfilter.
797 Stack the shifted residuals and apply them as a correction to the
798 solution from the previous iteration.
799 Restrict the new model solutions from varying by more than a factor of
800 `modelClampFactor` from the last solution, and additionally restrict the
801 individual subfilter models from varying by more than a factor of
802 `frequencyClampFactor` from their average.
803 Finally, mitigate potentially oscillating solutions by averaging the new
804 solution with the solution from the previous iteration, weighted by
805 their convergence metric.
809 dcrModels : `lsst.pipe.tasks.DcrModel`
810 Best fit model of the true sky after correcting chromatic effects.
811 subExposures : `dict` of `lsst.afw.image.ExposureF`
812 The pre-loaded exposures for the current subregion.
813 bbox : `lsst.geom.box.Box2I`
814 Bounding box of the subregion to coadd.
815 dcrBBox : `lsst.geom.box.Box2I`
816 Sub-region of the coadd which includes a buffer to allow for DCR.
817 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
818 `lsst.daf.persistence.ButlerDataRef`
819 The data references to the input warped exposures.
820 statsCtrl : `lsst.afw.math.StatisticsControl`
821 Statistics control object for coadd
822 convergenceMetric : `float`
823 Quality of fit metric for the matched templates of the input images.
824 gain : `float`, optional
825 Relative weight to give the new solution when updating the model.
826 modelWeights : `numpy.ndarray` or `float`
827 A 2D array of weight values that tapers smoothly to zero away from detected sources.
828 Set to a placeholder value of 1.0 if ``self.config.useModelWeights`` is False.
829 refImage : `lsst.afw.image.Image`
830 A reference image used to supply the default pixel values.
831 dcrWeights : `list` of `lsst.afw.image.Image`
832 Per-pixel weights for each subfilter.
833 Equal to 1/(number of unmasked images contributing to each pixel).
835 residualGeneratorList = []
837 for warpExpRef
in warpRefList:
838 visit = warpExpRef.dataId[
"visit"]
839 exposure = subExposures[visit]
840 visitInfo = exposure.getInfo().getVisitInfo()
841 wcs = exposure.getInfo().getWcs()
842 templateImage = dcrModels.buildMatchedTemplate(exposure=exposure,
843 order=self.config.imageInterpOrder,
844 splitSubfilters=self.config.splitSubfilters,
845 splitThreshold=self.config.splitThreshold,
846 amplifyModel=self.config.accelerateModel)
847 residual = exposure.image.array - templateImage.array
849 residual *= exposure.variance.array
853 residualGeneratorList.append(self.dcrResiduals(residual, visitInfo, wcs, dcrModels.filter))
855 dcrSubModelOut = self.newModelFromResidual(dcrModels, residualGeneratorList, dcrBBox, statsCtrl,
857 modelWeights=modelWeights,
859 dcrWeights=dcrWeights)
860 dcrModels.assign(dcrSubModelOut, bbox)
863 """Prepare a residual image for stacking in each subfilter by applying the reverse DCR shifts.
867 residual : `numpy.ndarray`
868 The residual masked image for one exposure,
869 after subtracting the matched template
870 visitInfo : `lsst.afw.image.VisitInfo`
871 Metadata for the exposure.
872 wcs : `lsst.afw.geom.SkyWcs`
873 Coordinate system definition (wcs) for the exposure.
874 filterInfo : `lsst.afw.image.Filter`
875 The filter definition, set in the current instruments' obs package.
876 Required for any calculation of DCR, including making matched templates.
880 residualImage : `numpy.ndarray`
881 The residual image for the next subfilter, shifted for DCR.
885 filteredResidual = ndimage.spline_filter(residual, order=self.config.imageInterpOrder)
888 dcrShift =
calculateDcr(visitInfo, wcs, filterInfo, self.config.dcrNumSubfilters,
889 splitSubfilters=
False)
891 yield applyDcr(filteredResidual, dcr, useInverse=
True, splitSubfilters=
False,
892 doPrefilter=
False, order=self.config.imageInterpOrder)
895 gain, modelWeights, refImage, dcrWeights):
896 """Calculate a new DcrModel from a set of image residuals.
900 dcrModels : `lsst.pipe.tasks.DcrModel`
901 Current model of the true sky after correcting chromatic effects.
902 residualGeneratorList : `generator` of `numpy.ndarray`
903 The residual image for the next subfilter, shifted for DCR.
904 dcrBBox : `lsst.geom.box.Box2I`
905 Sub-region of the coadd which includes a buffer to allow for DCR.
906 statsCtrl : `lsst.afw.math.StatisticsControl`
907 Statistics control object for coadd
909 Relative weight to give the new solution when updating the model.
910 modelWeights : `numpy.ndarray` or `float`
911 A 2D array of weight values that tapers smoothly to zero away from detected sources.
912 Set to a placeholder value of 1.0 if ``self.config.useModelWeights`` is False.
913 refImage : `lsst.afw.image.Image`
914 A reference image used to supply the default pixel values.
915 dcrWeights : `list` of `lsst.afw.image.Image`
916 Per-pixel weights for each subfilter.
917 Equal to 1/(number of unmasked images contributing to each pixel).
921 dcrModel : `lsst.pipe.tasks.DcrModel`
922 New model of the true sky after correcting chromatic effects.
925 for subfilter, model
in enumerate(dcrModels):
926 residualsList = [
next(residualGenerator)
for residualGenerator
in residualGeneratorList]
927 residual = np.sum(residualsList, axis=0)
928 residual *= dcrWeights[subfilter][dcrBBox].array
930 newModel = model[dcrBBox].
clone()
931 newModel.array += residual
933 badPixels = ~np.isfinite(newModel.array)
934 newModel.array[badPixels] = model[dcrBBox].array[badPixels]
935 if self.config.regularizeModelIterations > 0:
936 dcrModels.regularizeModelIter(subfilter, newModel, dcrBBox,
937 self.config.regularizeModelIterations,
938 self.config.regularizationWidth)
939 newModelImages.append(newModel)
940 if self.config.regularizeModelFrequency > 0:
941 dcrModels.regularizeModelFreq(newModelImages, dcrBBox, statsCtrl,
942 self.config.regularizeModelFrequency,
943 self.config.regularizationWidth)
944 dcrModels.conditionDcrModel(newModelImages, dcrBBox, gain=gain)
945 self.applyModelWeights(newModelImages, refImage[dcrBBox], modelWeights)
946 return DcrModel(newModelImages, dcrModels.filter, dcrModels.psf,
947 dcrModels.mask, dcrModels.variance)
950 """Calculate a quality of fit metric for the matched templates.
954 dcrModels : `lsst.pipe.tasks.DcrModel`
955 Best fit model of the true sky after correcting chromatic effects.
956 subExposures : `dict` of `lsst.afw.image.ExposureF`
957 The pre-loaded exposures for the current subregion.
958 bbox : `lsst.geom.box.Box2I`
960 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
961 `lsst.daf.persistence.ButlerDataRef`
962 The data references to the input warped exposures.
963 weightList : `list` of `float`
964 The weight to give each input exposure in the coadd
965 statsCtrl : `lsst.afw.math.StatisticsControl`
966 Statistics control object for coadd
970 convergenceMetric : `float`
971 Quality of fit metric for all input exposures, within the sub-region
973 significanceImage = np.abs(dcrModels.getReferenceImage(bbox))
975 significanceImage += nSigma*dcrModels.calculateNoiseCutoff(dcrModels[1], statsCtrl,
976 bufferSize=self.bufferSize)
977 if np.max(significanceImage) == 0:
978 significanceImage += 1.
982 for warpExpRef, expWeight
in zip(warpRefList, weightList):
983 visit = warpExpRef.dataId[
"visit"]
984 exposure = subExposures[visit][bbox]
985 singleMetric = self.calculateSingleConvergence(dcrModels, exposure, significanceImage, statsCtrl)
986 metric += singleMetric
987 metricList[visit] = singleMetric
989 self.log.
info(
"Individual metrics:\n%s", metricList)
990 return 1.0
if weight == 0.0
else metric/weight
993 """Calculate a quality of fit metric for a single matched template.
997 dcrModels : `lsst.pipe.tasks.DcrModel`
998 Best fit model of the true sky after correcting chromatic effects.
999 exposure : `lsst.afw.image.ExposureF`
1000 The input warped exposure to evaluate.
1001 significanceImage : `numpy.ndarray`
1002 Array of weights for each pixel corresponding to its significance
1003 for the convergence calculation.
1004 statsCtrl : `lsst.afw.math.StatisticsControl`
1005 Statistics control object for coadd
1009 convergenceMetric : `float`
1010 Quality of fit metric for one exposure, within the sub-region.
1012 convergeMask = exposure.mask.getPlaneBitMask(self.config.convergenceMaskPlanes)
1013 templateImage = dcrModels.buildMatchedTemplate(exposure=exposure,
1014 order=self.config.imageInterpOrder,
1015 splitSubfilters=self.config.splitSubfilters,
1016 splitThreshold=self.config.splitThreshold,
1017 amplifyModel=self.config.accelerateModel)
1018 diffVals = np.abs(exposure.image.array - templateImage.array)*significanceImage
1019 refVals = np.abs(exposure.image.array + templateImage.array)*significanceImage/2.
1021 finitePixels = np.isfinite(diffVals)
1022 goodMaskPixels = (exposure.mask.array & statsCtrl.getAndMask()) == 0
1023 convergeMaskPixels = exposure.mask.array & convergeMask > 0
1024 usePixels = finitePixels & goodMaskPixels & convergeMaskPixels
1025 if np.sum(usePixels) == 0:
1028 diffUse = diffVals[usePixels]
1029 refUse = refVals[usePixels]
1030 metric = np.sum(diffUse/np.median(diffUse))/np.sum(refUse/np.median(diffUse))
1034 """Add a list of sub-band coadds together.
1038 dcrCoadds : `list` of `lsst.afw.image.ExposureF`
1039 A list of coadd exposures, each exposure containing
1040 the model for one subfilter.
1044 coaddExposure : `lsst.afw.image.ExposureF`
1045 A single coadd exposure that is the sum of the sub-bands.
1047 coaddExposure = dcrCoadds[0].
clone()
1048 for coadd
in dcrCoadds[1:]:
1049 coaddExposure.maskedImage += coadd.maskedImage
1050 return coaddExposure
1052 def fillCoadd(self, dcrModels, skyInfo, warpRefList, weightList, calibration=None, coaddInputs=None,
1053 mask=None, variance=None):
1054 """Create a list of coadd exposures from a list of masked images.
1058 dcrModels : `lsst.pipe.tasks.DcrModel`
1059 Best fit model of the true sky after correcting chromatic effects.
1060 skyInfo : `lsst.pipe.base.Struct`
1061 Patch geometry information, from getSkyInfo
1062 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
1063 `lsst.daf.persistence.ButlerDataRef`
1064 The data references to the input warped exposures.
1065 weightList : `list` of `float`
1066 The weight to give each input exposure in the coadd
1067 calibration : `lsst.afw.Image.PhotoCalib`, optional
1068 Scale factor to set the photometric calibration of an exposure.
1069 coaddInputs : `lsst.afw.Image.CoaddInputs`, optional
1070 A record of the observations that are included in the coadd.
1071 mask : `lsst.afw.image.Mask`, optional
1072 Optional mask to override the values in the final coadd.
1073 variance : `lsst.afw.image.Image`, optional
1074 Optional variance plane to override the values in the final coadd.
1078 dcrCoadds : `list` of `lsst.afw.image.ExposureF`
1079 A list of coadd exposures, each exposure containing
1080 the model for one subfilter.
1083 refModel = dcrModels.getReferenceImage()
1084 for model
in dcrModels:
1085 if self.config.accelerateModel > 1:
1086 model.array = (model.array - refModel)*self.config.accelerateModel + refModel
1087 coaddExposure = afwImage.ExposureF(skyInfo.bbox, skyInfo.wcs)
1088 if calibration
is not None:
1089 coaddExposure.setPhotoCalib(calibration)
1090 if coaddInputs
is not None:
1091 coaddExposure.getInfo().setCoaddInputs(coaddInputs)
1093 self.assembleMetadata(coaddExposure, warpRefList, weightList)
1095 coaddExposure.setPsf(dcrModels.psf)
1097 maskedImage = afwImage.MaskedImageF(dcrModels.bbox)
1098 maskedImage.image = model
1099 maskedImage.mask = dcrModels.mask
1100 maskedImage.variance = dcrModels.variance
1101 coaddExposure.setMaskedImage(maskedImage[skyInfo.bbox])
1102 coaddExposure.setPhotoCalib(self.scaleZeroPoint.getPhotoCalib())
1103 if mask
is not None:
1104 coaddExposure.setMask(mask)
1105 if variance
is not None:
1106 coaddExposure.setVariance(variance)
1107 dcrCoadds.append(coaddExposure)
1111 """Calculate the gain to use for the current iteration.
1113 After calculating a new DcrModel, each value is averaged with the
1114 value in the corresponding pixel from the previous iteration. This
1115 reduces oscillating solutions that iterative techniques are plagued by,
1116 and speeds convergence. By far the biggest changes to the model
1117 happen in the first couple iterations, so we can also use a more
1118 aggressive gain later when the model is changing slowly.
1122 convergenceList : `list` of `float`
1123 The quality of fit metric from each previous iteration.
1124 gainList : `list` of `float`
1125 The gains used in each previous iteration: appended with the new
1127 Gains are numbers between ``self.config.baseGain`` and 1.
1132 Relative weight to give the new solution when updating the model.
1133 A value of 1.0 gives equal weight to both solutions.
1138 If ``len(convergenceList) != len(gainList)+1``.
1140 nIter = len(convergenceList)
1141 if nIter != len(gainList) + 1:
1142 raise ValueError(
"convergenceList (%d) must be one element longer than gainList (%d)."
1143 % (len(convergenceList), len(gainList)))
1145 if self.config.baseGain
is None:
1148 baseGain = 1./(self.config.dcrNumSubfilters - 1)
1150 baseGain = self.config.baseGain
1152 if self.config.useProgressiveGain
and nIter > 2:
1160 estFinalConv = [((1 + gainList[i])*convergenceList[i + 1] - convergenceList[i])/gainList[i]
1161 for i
in range(nIter - 1)]
1164 estFinalConv = np.array(estFinalConv)
1165 estFinalConv[estFinalConv < 0] = 0
1167 estFinalConv = np.median(estFinalConv[
max(nIter - 5, 0):])
1168 lastGain = gainList[-1]
1169 lastConv = convergenceList[-2]
1170 newConv = convergenceList[-1]
1175 predictedConv = (estFinalConv*lastGain + lastConv)/(1. + lastGain)
1181 delta = (predictedConv - newConv)/((lastConv - estFinalConv)/(1 + lastGain))
1182 newGain = 1 -
abs(delta)
1184 newGain = (newGain + lastGain)/2.
1185 gain =
max(baseGain, newGain)
1188 gainList.append(gain)
1192 """Build an array that smoothly tapers to 0 away from detected sources.
1196 dcrModels : `lsst.pipe.tasks.DcrModel`
1197 Best fit model of the true sky after correcting chromatic effects.
1198 dcrBBox : `lsst.geom.box.Box2I`
1199 Sub-region of the coadd which includes a buffer to allow for DCR.
1203 weights : `numpy.ndarray` or `float`
1204 A 2D array of weight values that tapers smoothly to zero away from detected sources.
1205 Set to a placeholder value of 1.0 if ``self.config.useModelWeights`` is False.
1210 If ``useModelWeights`` is set and ``modelWeightsWidth`` is negative.
1212 if not self.config.useModelWeights:
1214 if self.config.modelWeightsWidth < 0:
1215 raise ValueError(
"modelWeightsWidth must not be negative if useModelWeights is set")
1216 convergeMask = dcrModels.mask.getPlaneBitMask(self.config.convergenceMaskPlanes)
1217 convergeMaskPixels = dcrModels.mask[dcrBBox].array & convergeMask > 0
1218 weights = np.zeros_like(dcrModels[0][dcrBBox].array)
1219 weights[convergeMaskPixels] = 1.
1220 weights = ndimage.filters.gaussian_filter(weights, self.config.modelWeightsWidth)
1221 weights /= np.max(weights)
1225 """Smoothly replace model pixel values with those from a
1226 reference at locations away from detected sources.
1230 modelImages : `list` of `lsst.afw.image.Image`
1231 The new DCR model images from the current iteration.
1232 The values will be modified in place.
1233 refImage : `lsst.afw.image.MaskedImage`
1234 A reference image used to supply the default pixel values.
1235 modelWeights : `numpy.ndarray` or `float`
1236 A 2D array of weight values that tapers smoothly to zero away from detected sources.
1237 Set to a placeholder value of 1.0 if ``self.config.useModelWeights`` is False.
1239 if self.config.useModelWeights:
1240 for model
in modelImages:
1241 model.array *= modelWeights
1242 model.array += refImage.array*(1. - modelWeights)/self.config.dcrNumSubfilters
1245 """Pre-load sub-regions of a list of exposures.
1249 bbox : `lsst.geom.box.Box2I`
1251 statsCtrl : `lsst.afw.math.StatisticsControl`
1252 Statistics control object for coadd
1253 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
1254 `lsst.daf.persistence.ButlerDataRef`
1255 The data references to the input warped exposures.
1256 imageScalerList : `list` of `lsst.pipe.task.ImageScaler`
1257 The image scalars correct for the zero point of the exposures.
1258 spanSetMaskList : `list` of `dict` containing spanSet lists, or None
1259 Each element is dict with keys = mask plane name to add the spans to
1263 subExposures : `dict`
1264 The `dict` keys are the visit IDs,
1265 and the values are `lsst.afw.image.ExposureF`
1266 The pre-loaded exposures for the current subregion.
1267 The variance plane contains weights, and not the variance
1269 tempExpName = self.getTempExpDatasetName(self.warpType)
1270 zipIterables = zip(warpRefList, imageScalerList, spanSetMaskList)
1272 for warpExpRef, imageScaler, altMaskSpans
in zipIterables:
1273 if isinstance(warpExpRef, DeferredDatasetHandle):
1274 exposure = warpExpRef.get(parameters={
'bbox': bbox})
1276 exposure = warpExpRef.get(tempExpName +
"_sub", bbox=bbox)
1277 visit = warpExpRef.dataId[
"visit"]
1278 if altMaskSpans
is not None:
1279 self.applyAltMaskPlanes(exposure.mask, altMaskSpans)
1280 imageScaler.scaleMaskedImage(exposure.maskedImage)
1282 exposure.variance.array[:, :] = 0.
1284 exposure.variance.array[(exposure.mask.array & statsCtrl.getAndMask()) == 0] = 1.
1287 exposure.image.array[(exposure.mask.array & statsCtrl.getAndMask()) > 0] = 0.
1288 subExposures[visit] = exposure
1292 """Compute the PSF of the coadd from the exposures with the best seeing.
1296 templateCoadd : `lsst.afw.image.ExposureF`
1297 The initial coadd exposure before accounting for DCR.
1298 warpRefList : `list` of `lsst.daf.butler.DeferredDatasetHandle` or
1299 `lsst.daf.persistence.ButlerDataRef`
1300 The data references to the input warped exposures.
1304 psf : `lsst.meas.algorithms.CoaddPsf`
1305 The average PSF of the input exposures with the best seeing.
1307 sigma2fwhm = 2.*np.sqrt(2.*np.log(2.))
1308 tempExpName = self.getTempExpDatasetName(self.warpType)
1311 ccds = templateCoadd.getInfo().getCoaddInputs().ccds
1312 psfRefSize = templateCoadd.getPsf().computeShape().getDeterminantRadius()*sigma2fwhm
1313 psfSizes = np.zeros(len(ccds))
1314 ccdVisits = np.array(ccds[
"visit"])
1315 for warpExpRef
in warpRefList:
1316 if isinstance(warpExpRef, DeferredDatasetHandle):
1318 psf = warpExpRef.get(component=
"psf")
1321 psf = warpExpRef.get(tempExpName).getPsf()
1322 visit = warpExpRef.dataId[
"visit"]
1323 psfSize = psf.computeShape().getDeterminantRadius()*sigma2fwhm
1324 psfSizes[ccdVisits == visit] = psfSize
1328 sizeThreshold =
min(np.median(psfSizes), psfRefSize)
1329 goodPsfs = psfSizes <= sizeThreshold
1330 psf = measAlg.CoaddPsf(ccds[goodPsfs], templateCoadd.getWcs(),
1331 self.config.coaddPsf.makeControl())