23 """Perform a single fit cycle of FGCM.
25 This task runs a single "fit cycle" of fgcm. Prior to running this task
26 one must run both fgcmMakeLut (to construct the atmosphere and instrumental
27 look-up-table) and fgcmBuildStars (to extract visits and star observations
30 The fgcmFitCycle is meant to be run multiple times, and is tracked by the
31 'cycleNumber'. After each run of the fit cycle, diagnostic plots should
32 be inspected to set parameters for outlier rejection on the following
33 cycle. Please see the fgcmcal Cookbook for details.
42 import lsst.pex.config
as pexConfig
46 from .utilities
import makeConfigDict, translateFgcmLut, translateVisitCatalog
47 from .utilities
import extractReferenceMags
48 from .utilities
import computeCcdOffsets, makeZptSchema, makeZptCat
49 from .utilities
import makeAtmSchema, makeAtmCat, makeStdSchema, makeStdCat
50 from .sedterms
import SedboundarytermDict, SedtermDict
54 __all__ = [
'FgcmFitCycleConfig',
'FgcmFitCycleTask',
'FgcmFitCycleRunner']
58 """Config for FgcmFitCycle"""
60 bands = pexConfig.ListField(
61 doc=
"Bands to run calibration",
65 fitFlag = pexConfig.ListField(
66 doc=(
"Flag for which bands are directly constrained in the FGCM fit. "
67 "Bands set to 0 will have the atmosphere constrained from observations "
68 "in other bands on the same night. Must be same length as config.bands, "
69 "and matched band-by-band."),
73 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
74 "It will be removed after v20. Use fitBands instead."),
76 fitBands = pexConfig.ListField(
77 doc=(
"Bands to use in atmospheric fit. The bands not listed here will have "
78 "the atmosphere constrained from the 'fitBands' on the same night. "
79 "Must be a subset of `config.bands`"),
83 requiredFlag = pexConfig.ListField(
84 doc=(
"Flag for which bands are required for a star to be considered a calibration "
85 "star in the FGCM fit. Typically this should be the same as fitFlag. Must "
86 "be same length as config.bands, and matched band-by-band."),
90 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
91 "It will be removed after v20. Use requiredBands instead."),
93 requiredBands = pexConfig.ListField(
94 doc=(
"Bands that are required for a star to be considered a calibration star. "
95 "Must be a subset of `config.bands`"),
99 filterMap = pexConfig.DictField(
100 doc=
"Mapping from 'filterName' to band.",
105 doReferenceCalibration = pexConfig.Field(
106 doc=
"Use reference catalog as additional constraint on calibration",
110 refStarSnMin = pexConfig.Field(
111 doc=
"Reference star signal-to-noise minimum to use in calibration. Set to <=0 for no cut.",
115 refStarOutlierNSig = pexConfig.Field(
116 doc=(
"Number of sigma compared to average mag for reference star to be considered an outlier. "
117 "Computed per-band, and if it is an outlier in any band it is rejected from fits."),
121 applyRefStarColorCuts = pexConfig.Field(
122 doc=
"Apply color cuts to reference stars?",
126 nCore = pexConfig.Field(
127 doc=
"Number of cores to use",
131 nStarPerRun = pexConfig.Field(
132 doc=
"Number of stars to run in each chunk",
136 nExpPerRun = pexConfig.Field(
137 doc=
"Number of exposures to run in each chunk",
141 reserveFraction = pexConfig.Field(
142 doc=
"Fraction of stars to reserve for testing",
146 freezeStdAtmosphere = pexConfig.Field(
147 doc=
"Freeze atmosphere parameters to standard (for testing)",
151 precomputeSuperStarInitialCycle = pexConfig.Field(
152 doc=
"Precompute superstar flat for initial cycle",
156 superStarSubCcd = pexConfig.Field(
157 doc=
"Compute superstar flat on sub-ccd scale",
161 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
162 "It will be removed after v20. Use superStarSubCcdDict instead."),
164 superStarSubCcdDict = pexConfig.DictField(
165 doc=(
"Per-band specification on whether to compute superstar flat on sub-ccd scale. "
166 "Must have one entry per band."),
171 superStarSubCcdChebyshevOrder = pexConfig.Field(
172 doc=(
"Order of the 2D chebyshev polynomials for sub-ccd superstar fit. "
173 "Global default is first-order polynomials, and should be overridden "
174 "on a camera-by-camera basis depending on the ISR."),
178 superStarSubCcdTriangular = pexConfig.Field(
179 doc=(
"Should the sub-ccd superstar chebyshev matrix be triangular to "
180 "suppress high-order cross terms?"),
184 superStarSigmaClip = pexConfig.Field(
185 doc=
"Number of sigma to clip outliers when selecting for superstar flats",
189 ccdGraySubCcd = pexConfig.Field(
190 doc=
"Compute CCD gray terms on sub-ccd scale",
194 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
195 "It will be removed after v20. Use ccdGraySubCcdDict instead."),
197 ccdGraySubCcdDict = pexConfig.DictField(
198 doc=(
"Per-band specification on whether to compute achromatic per-ccd residual "
199 "('ccd gray') on a sub-ccd scale."),
204 ccdGraySubCcdChebyshevOrder = pexConfig.Field(
205 doc=
"Order of the 2D chebyshev polynomials for sub-ccd gray fit.",
209 ccdGraySubCcdTriangular = pexConfig.Field(
210 doc=(
"Should the sub-ccd gray chebyshev matrix be triangular to "
211 "suppress high-order cross terms?"),
215 cycleNumber = pexConfig.Field(
216 doc=(
"FGCM fit cycle number. This is automatically incremented after each run "
217 "and stage of outlier rejection. See cookbook for details."),
221 isFinalCycle = pexConfig.Field(
222 doc=(
"Is this the final cycle of the fitting? Will automatically compute final "
223 "selection of stars and photometric exposures, and will output zeropoints "
224 "and standard stars for use in fgcmOutputProducts"),
228 maxIterBeforeFinalCycle = pexConfig.Field(
229 doc=(
"Maximum fit iterations, prior to final cycle. The number of iterations "
230 "will always be 0 in the final cycle for cleanup and final selection."),
234 utBoundary = pexConfig.Field(
235 doc=
"Boundary (in UTC) from day-to-day",
239 washMjds = pexConfig.ListField(
240 doc=
"Mirror wash MJDs",
244 epochMjds = pexConfig.ListField(
245 doc=
"Epoch boundaries in MJD",
249 minObsPerBand = pexConfig.Field(
250 doc=
"Minimum good observations per band",
256 latitude = pexConfig.Field(
257 doc=
"Observatory latitude",
261 brightObsGrayMax = pexConfig.Field(
262 doc=
"Maximum gray extinction to be considered bright observation",
266 minStarPerCcd = pexConfig.Field(
267 doc=(
"Minimum number of good stars per CCD to be used in calibration fit. "
268 "CCDs with fewer stars will have their calibration estimated from other "
269 "CCDs in the same visit, with zeropoint error increased accordingly."),
273 minCcdPerExp = pexConfig.Field(
274 doc=(
"Minimum number of good CCDs per exposure/visit to be used in calibration fit. "
275 "Visits with fewer good CCDs will have CCD zeropoints estimated where possible."),
279 maxCcdGrayErr = pexConfig.Field(
280 doc=
"Maximum error on CCD gray offset to be considered photometric",
284 minStarPerExp = pexConfig.Field(
285 doc=(
"Minimum number of good stars per exposure/visit to be used in calibration fit. "
286 "Visits with fewer good stars will have CCD zeropoints estimated where possible."),
290 minExpPerNight = pexConfig.Field(
291 doc=
"Minimum number of good exposures/visits to consider a partly photometric night",
295 expGrayInitialCut = pexConfig.Field(
296 doc=(
"Maximum exposure/visit gray value for initial selection of possible photometric "
301 expGrayPhotometricCut = pexConfig.ListField(
302 doc=(
"Maximum (negative) exposure gray for a visit to be considered photometric. "
303 "Must be same length as config.bands, and matched band-by-band."),
307 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
308 "It will be removed after v20. Use expGrayPhotometricCutDict instead."),
310 expGrayPhotometricCutDict = pexConfig.DictField(
311 doc=(
"Per-band specification on maximum (negative) achromatic exposure residual "
312 "('gray term') for a visit to be considered photometric. Must have one "
313 "entry per band. Broad-band filters should be -0.05."),
318 expGrayHighCut = pexConfig.ListField(
319 doc=(
"Maximum (positive) exposure gray for a visit to be considered photometric. "
320 "Must be same length as config.bands, and matched band-by-band."),
324 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
325 "It will be removed after v20. Use expGrayHighCutDict instead."),
327 expGrayHighCutDict = pexConfig.DictField(
328 doc=(
"Per-band specification on maximum (positive) achromatic exposure residual "
329 "('gray term') for a visit to be considered photometric. Must have one "
330 "entry per band. Broad-band filters should be 0.2."),
335 expGrayRecoverCut = pexConfig.Field(
336 doc=(
"Maximum (negative) exposure gray to be able to recover bad ccds via interpolation. "
337 "Visits with more gray extinction will only get CCD zeropoints if there are "
338 "sufficient star observations (minStarPerCcd) on that CCD."),
342 expVarGrayPhotometricCut = pexConfig.Field(
343 doc=
"Maximum exposure variance to be considered possibly photometric",
347 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
348 "It will be removed after v20. Use expVarGrayPhotometricCutDict instead."),
350 expVarGrayPhotometricCutDict = pexConfig.DictField(
351 doc=(
"Per-band specification on maximum exposure variance to be considered possibly "
352 "photometric. Must have one entry per band. Broad-band filters should be "
358 expGrayErrRecoverCut = pexConfig.Field(
359 doc=(
"Maximum exposure gray error to be able to recover bad ccds via interpolation. "
360 "Visits with more gray variance will only get CCD zeropoints if there are "
361 "sufficient star observations (minStarPerCcd) on that CCD."),
365 aperCorrFitNBins = pexConfig.Field(
366 doc=(
"Number of aperture bins used in aperture correction fit. When set to 0"
367 "no fit will be performed, and the config.aperCorrInputSlopes will be "
368 "used if available."),
372 aperCorrInputSlopes = pexConfig.ListField(
373 doc=(
"Aperture correction input slope parameters. These are used on the first "
374 "fit iteration, and aperture correction parameters will be updated from "
375 "the data if config.aperCorrFitNBins > 0. It is recommended to set this"
376 "when there is insufficient data to fit the parameters (e.g. tract mode). "
377 "If set, must be same length as config.bands, and matched band-by-band."),
381 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
382 "It will be removed after v20. Use aperCorrInputSlopeDict instead."),
384 aperCorrInputSlopeDict = pexConfig.DictField(
385 doc=(
"Per-band specification of aperture correction input slope parameters. These "
386 "are used on the first fit iteration, and aperture correction parameters will "
387 "be updated from the data if config.aperCorrFitNBins > 0. It is recommended "
388 "to set this when there is insufficient data to fit the parameters (e.g. "
394 sedFudgeFactors = pexConfig.ListField(
395 doc=(
"Fudge factors for computing linear SED from colors. Must be same length as "
396 "config.bands, and matched band-by-band."),
400 deprecated=(
"This field has been deprecated and will be removed after v20. "
401 "Please use sedSlopeTermMap and sedSlopeMap."),
403 sedboundaryterms = pexConfig.ConfigField(
404 doc=
"Mapping from bands to SED boundary term names used is sedterms.",
405 dtype=SedboundarytermDict,
407 sedterms = pexConfig.ConfigField(
408 doc=
"Mapping from terms to bands for fgcm linear SED approximations.",
411 sigFgcmMaxErr = pexConfig.Field(
412 doc=
"Maximum mag error for fitting sigma_FGCM",
416 sigFgcmMaxEGray = pexConfig.ListField(
417 doc=(
"Maximum (absolute) gray value for observation in sigma_FGCM. "
418 "May be 1 element (same for all bands) or the same length as config.bands."),
422 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
423 "It will be removed after v20. Use sigFgcmMaxEGrayDict instead."),
425 sigFgcmMaxEGrayDict = pexConfig.DictField(
426 doc=(
"Per-band specification for maximum (absolute) achromatic residual (gray value) "
427 "for observations in sigma_fgcm (raw repeatability). Broad-band filters "
433 ccdGrayMaxStarErr = pexConfig.Field(
434 doc=(
"Maximum error on a star observation to use in ccd gray (achromatic residual) "
439 approxThroughput = pexConfig.ListField(
440 doc=(
"Approximate overall throughput at start of calibration observations. "
441 "May be 1 element (same for all bands) or the same length as config.bands."),
445 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
446 "It will be removed after v20. Use approxThroughputDict instead."),
448 approxThroughputDict = pexConfig.DictField(
449 doc=(
"Per-band specification of the approximate overall throughput at the start of "
450 "calibration observations. Must have one entry per band. Typically should "
456 sigmaCalRange = pexConfig.ListField(
457 doc=
"Allowed range for systematic error floor estimation",
459 default=(0.001, 0.003),
461 sigmaCalFitPercentile = pexConfig.ListField(
462 doc=
"Magnitude percentile range to fit systematic error floor",
464 default=(0.05, 0.15),
466 sigmaCalPlotPercentile = pexConfig.ListField(
467 doc=
"Magnitude percentile range to plot systematic error floor",
469 default=(0.05, 0.95),
471 sigma0Phot = pexConfig.Field(
472 doc=
"Systematic error floor for all zeropoints",
476 mapLongitudeRef = pexConfig.Field(
477 doc=
"Reference longitude for plotting maps",
481 mapNSide = pexConfig.Field(
482 doc=
"Healpix nside for plotting maps",
486 outfileBase = pexConfig.Field(
487 doc=
"Filename start for plot output files",
491 starColorCuts = pexConfig.ListField(
492 doc=
"Encoded star-color cuts (to be cleaned up)",
494 default=(
"NO_DATA",),
496 colorSplitIndices = pexConfig.ListField(
497 doc=
"Band indices to use to split stars by color",
501 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
502 "It will be removed after v20. Use colorSplitBands instead."),
504 colorSplitBands = pexConfig.ListField(
505 doc=
"Band names to use to split stars by color. Must have 2 entries.",
510 modelMagErrors = pexConfig.Field(
511 doc=
"Should FGCM model the magnitude errors from sky/fwhm? (False means trust inputs)",
515 useQuadraticPwv = pexConfig.Field(
516 doc=
"Model PWV with a quadratic term for variation through the night?",
520 instrumentParsPerBand = pexConfig.Field(
521 doc=(
"Model instrumental parameters per band? "
522 "Otherwise, instrumental parameters (QE changes with time) are "
523 "shared among all bands."),
527 instrumentSlopeMinDeltaT = pexConfig.Field(
528 doc=(
"Minimum time change (in days) between observations to use in constraining "
529 "instrument slope."),
533 fitMirrorChromaticity = pexConfig.Field(
534 doc=
"Fit (intraband) mirror chromatic term?",
538 coatingMjds = pexConfig.ListField(
539 doc=
"Mirror coating dates in MJD",
543 outputStandardsBeforeFinalCycle = pexConfig.Field(
544 doc=
"Output standard stars prior to final cycle? Used in debugging.",
548 outputZeropointsBeforeFinalCycle = pexConfig.Field(
549 doc=
"Output standard stars prior to final cycle? Used in debugging.",
553 useRepeatabilityForExpGrayCuts = pexConfig.ListField(
554 doc=(
"Use star repeatability (instead of exposures) for computing photometric "
555 "cuts? Recommended for tract mode or bands with few exposures. "
556 "May be 1 element (same for all bands) or the same length as config.bands."),
560 deprecated=(
"This field is no longer used, and has been deprecated by DM-23699. "
561 "It will be removed after v20. Use useRepeatabilityForExpGrayCutsDict instead."),
563 useRepeatabilityForExpGrayCutsDict = pexConfig.DictField(
564 doc=(
"Per-band specification on whether to use star repeatability (instead of exposures) "
565 "for computing photometric cuts. Recommended for tract mode or bands with few visits."),
570 autoPhotometricCutNSig = pexConfig.Field(
571 doc=(
"Number of sigma for automatic computation of (low) photometric cut. "
572 "Cut is based on exposure gray width (per band), unless "
573 "useRepeatabilityForExpGrayCuts is set, in which case the star "
574 "repeatability is used (also per band)."),
578 autoHighCutNSig = pexConfig.Field(
579 doc=(
"Number of sigma for automatic computation of (high) outlier cut. "
580 "Cut is based on exposure gray width (per band), unless "
581 "useRepeatabilityForExpGrayCuts is set, in which case the star "
582 "repeatability is used (also per band)."),
586 quietMode = pexConfig.Field(
587 doc=
"Be less verbose with logging.",
598 for band
in self.fitBands:
599 if band
not in self.bands:
600 msg =
'fitBand %s not in bands' % (band)
601 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.fitBands, self, msg)
602 for band
in self.requiredBands:
603 if band
not in self.bands:
604 msg =
'requiredBand %s not in bands' % (band)
605 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.requiredBands, self, msg)
606 for band
in self.colorSplitBands:
607 if band
not in self.bands:
608 msg =
'colorSplitBand %s not in bands' % (band)
609 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.colorSplitBands, self, msg)
610 for band
in self.bands:
611 if band
not in self.superStarSubCcdDict:
612 msg =
'band %s not in superStarSubCcdDict' % (band)
613 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.superStarSubCcdDict,
615 if band
not in self.ccdGraySubCcdDict:
616 msg =
'band %s not in ccdGraySubCcdDict' % (band)
617 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.ccdGraySubCcdDict,
619 if band
not in self.expGrayPhotometricCutDict:
620 msg =
'band %s not in expGrayPhotometricCutDict' % (band)
621 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.expGrayPhotometricCutDict,
623 if band
not in self.expGrayHighCutDict:
624 msg =
'band %s not in expGrayHighCutDict' % (band)
625 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.expGrayHighCutDict,
627 if band
not in self.expVarGrayPhotometricCutDict:
628 msg =
'band %s not in expVarGrayPhotometricCutDict' % (band)
629 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.expVarGrayPhotometricCutDict,
631 if band
not in self.sigFgcmMaxEGrayDict:
632 msg =
'band %s not in sigFgcmMaxEGrayDict' % (band)
633 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.sigFgcmMaxEGrayDict,
635 if band
not in self.approxThroughputDict:
636 msg =
'band %s not in approxThroughputDict' % (band)
637 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.approxThroughputDict,
639 if band
not in self.useRepeatabilityForExpGrayCutsDict:
640 msg =
'band %s not in useRepeatabilityForExpGrayCutsDict' % (band)
641 raise pexConfig.FieldValidationError(FgcmFitCycleConfig.useRepeatabilityForExpGrayCutsDict,
646 """Subclass of TaskRunner for fgcmFitCycleTask
648 fgcmFitCycleTask.run() takes one argument, the butler, and uses
649 stars and visits previously extracted from dataRefs by
651 This Runner does not perform any dataRef parallelization, but the FGCM
652 code called by the Task uses python multiprocessing (see the "ncores"
659 Return a list with one element, the butler.
661 return [parsedCmd.butler]
667 butler: `lsst.daf.persistence.Butler`
671 exitStatus: `list` with `pipeBase.Struct`
672 exitStatus (0: success; 1: failure)
675 task = self.TaskClass(config=self.config, log=self.log)
679 task.runDataRef(butler)
682 task.runDataRef(butler)
683 except Exception
as e:
685 task.log.fatal(
"Failed: %s" % e)
686 if not isinstance(e, pipeBase.TaskError):
687 traceback.print_exc(file=sys.stderr)
689 task.writeMetadata(butler)
692 return [pipeBase.Struct(exitStatus=exitStatus)]
696 Run the task, with no multiprocessing
700 parsedCmd: ArgumentParser parsed command line
705 if self.precall(parsedCmd):
708 resultList = self(targetList[0])
715 Run Single fit cycle for FGCM global calibration
718 ConfigClass = FgcmFitCycleConfig
719 RunnerClass = FgcmFitCycleRunner
720 _DefaultName =
"fgcmFitCycle"
724 Instantiate an fgcmFitCycle.
728 butler : `lsst.daf.persistence.Butler`
731 pipeBase.CmdLineTask.__init__(self, **kwargs)
734 def _getMetadataName(self):
740 Run a single fit cycle for FGCM
744 butler: `lsst.daf.persistence.Butler`
750 """Write the configuration used for processing the data, or check that an existing
751 one is equal to the new one if present. This is an override of the regular
752 version from pipe_base that knows about fgcmcycle.
756 butler : `lsst.daf.persistence.Butler`
757 Data butler used to write the config. The config is written to dataset type
758 `CmdLineTask._getConfigName`.
759 clobber : `bool`, optional
760 A boolean flag that controls what happens if a config already has been saved:
761 - `True`: overwrite or rename the existing config, depending on ``doBackup``.
762 - `False`: raise `TaskError` if this config does not match the existing config.
763 doBackup : `bool`, optional
764 Set to `True` to backup the config files if clobbering.
766 configName = self._getConfigName()
767 if configName
is None:
770 butler.put(self.config, configName, doBackup=doBackup, fgcmcycle=self.config.cycleNumber)
771 elif butler.datasetExists(configName, write=
True, fgcmcycle=self.config.cycleNumber):
774 oldConfig = butler.get(configName, immediate=
True, fgcmcycle=self.config.cycleNumber)
775 except Exception
as exc:
776 raise type(exc)(
"Unable to read stored config file %s (%s); consider using --clobber-config" %
779 def logConfigMismatch(msg):
780 self.log.
fatal(
"Comparing configuration: %s", msg)
782 if not self.config.compare(oldConfig, shortcut=
False, output=logConfigMismatch):
783 raise pipeBase.TaskError(
784 (
"Config does not match existing task config %r on disk; tasks configurations " +
785 "must be consistent within the same output repo (override with --clobber-config)") %
788 butler.put(self.config, configName, fgcmcycle=self.config.cycleNumber)
790 def _fgcmFitCycle(self, butler):
796 butler: `lsst.daf.persistence.Butler`
802 self.
maxIter = self.config.maxIterBeforeFinalCycle
807 if self.config.isFinalCycle:
816 camera = butler.get(
'camera')
821 lutCat = butler.get(
'fgcmLookUpTable')
822 fgcmLut, lutIndexVals, lutStd =
translateFgcmLut(lutCat, dict(self.config.filterMap))
828 visitCat = butler.get(
'fgcmVisitCatalog')
836 noFitsDict = {
'lutIndex': lutIndexVals,
838 'expInfo': fgcmExpInfo,
839 'ccdOffsets': ccdOffsets}
842 fgcmFitCycle = fgcm.FgcmFitCycle(configDict, useFits=
False,
843 noFitsDict=noFitsDict, noOutput=
True)
846 if (fgcmFitCycle.initialCycle):
848 fgcmPars = fgcm.FgcmParameters.newParsWithArrays(fgcmFitCycle.fgcmConfig,
853 fgcmPars = fgcm.FgcmParameters.loadParsWithArrays(fgcmFitCycle.fgcmConfig,
859 lastCycle = configDict[
'cycleNumber'] - 1
862 fgcmStars = fgcm.FgcmStars(fgcmFitCycle.fgcmConfig)
864 starObs = butler.get(
'fgcmStarObservations')
865 starIds = butler.get(
'fgcmStarIds')
866 starIndices = butler.get(
'fgcmStarIndices')
869 if butler.datasetExists(
'fgcmFlaggedStars', fgcmcycle=lastCycle):
870 flaggedStars = butler.get(
'fgcmFlaggedStars', fgcmcycle=lastCycle)
871 flagId = flaggedStars[
'objId'][:]
872 flagFlag = flaggedStars[
'objFlag'][:]
877 if self.config.doReferenceCalibration:
878 refStars = butler.get(
'fgcmReferenceStars')
882 self.config.filterMap)
883 refId = refStars[
'fgcm_id'][:]
892 visitIndex = np.searchsorted(fgcmExpInfo[
'VISIT'], starObs[
'visit'][starIndices[
'obsIndex']])
904 conv = starObs[0][
'ra'].asDegrees() / float(starObs[0][
'ra'])
906 fgcmStars.loadStars(fgcmPars,
907 starObs[
'visit'][starIndices[
'obsIndex']],
908 starObs[
'ccd'][starIndices[
'obsIndex']],
909 starObs[
'ra'][starIndices[
'obsIndex']] * conv,
910 starObs[
'dec'][starIndices[
'obsIndex']] * conv,
911 starObs[
'instMag'][starIndices[
'obsIndex']],
912 starObs[
'instMagErr'][starIndices[
'obsIndex']],
913 fgcmExpInfo[
'FILTERNAME'][visitIndex],
914 starIds[
'fgcm_id'][:],
917 starIds[
'obsArrIndex'][:],
919 obsX=starObs[
'x'][starIndices[
'obsIndex']],
920 obsY=starObs[
'y'][starIndices[
'obsIndex']],
921 psfCandidate=starObs[
'psf_candidate'][starIndices[
'obsIndex']],
939 fgcmFitCycle.setLUT(fgcmLut)
940 fgcmFitCycle.setStars(fgcmStars)
941 fgcmFitCycle.setPars(fgcmPars)
944 fgcmFitCycle.finishSetup()
958 updatedPhotometricCutDict = {b: float(fgcmFitCycle.updatedPhotometricCut[i])
for
959 i, b
in enumerate(self.config.bands)}
960 updatedHighCutDict = {band: float(fgcmFitCycle.updatedHighCut[i])
for
961 i, band
in enumerate(self.config.bands)}
963 outConfig = copy.copy(self.config)
964 outConfig.update(cycleNumber=(self.config.cycleNumber + 1),
965 precomputeSuperStarInitialCycle=
False,
966 freezeStdAtmosphere=
False,
967 expGrayPhotometricCutDict=updatedPhotometricCutDict,
968 expGrayHighCutDict=updatedHighCutDict)
969 configFileName =
'%s_cycle%02d_config.py' % (outConfig.outfileBase,
970 outConfig.cycleNumber)
971 outConfig.save(configFileName)
973 if self.config.isFinalCycle == 1:
975 self.log.
info(
"Everything is in place to run fgcmOutputProducts.py")
977 self.log.
info(
"Saved config for next cycle to %s" % (configFileName))
978 self.log.
info(
"Be sure to look at:")
979 self.log.
info(
" config.expGrayPhotometricCut")
980 self.log.
info(
" config.expGrayHighCut")
981 self.log.
info(
"If you are satisfied with the fit, please set:")
982 self.log.
info(
" config.isFinalCycle = True")
984 def _checkDatasetsExist(self, butler):
986 Check if necessary datasets exist to run fgcmFitCycle
990 butler: `lsst.daf.persistence.Butler`
995 If any of fgcmVisitCatalog, fgcmStarObservations, fgcmStarIds,
996 fgcmStarIndices, fgcmLookUpTable datasets do not exist.
997 If cycleNumber > 0, then also checks for fgcmFitParameters,
1001 if not butler.datasetExists(
'fgcmVisitCatalog'):
1002 raise RuntimeError(
"Could not find fgcmVisitCatalog in repo!")
1003 if not butler.datasetExists(
'fgcmStarObservations'):
1004 raise RuntimeError(
"Could not find fgcmStarObservations in repo!")
1005 if not butler.datasetExists(
'fgcmStarIds'):
1006 raise RuntimeError(
"Could not find fgcmStarIds in repo!")
1007 if not butler.datasetExists(
'fgcmStarIndices'):
1008 raise RuntimeError(
"Could not find fgcmStarIndices in repo!")
1009 if not butler.datasetExists(
'fgcmLookUpTable'):
1010 raise RuntimeError(
"Could not find fgcmLookUpTable in repo!")
1013 if (self.config.cycleNumber > 0):
1014 if not butler.datasetExists(
'fgcmFitParameters',
1015 fgcmcycle=self.config.cycleNumber-1):
1016 raise RuntimeError(
"Could not find fgcmFitParameters for previous cycle (%d) in repo!" %
1017 (self.config.cycleNumber-1))
1018 if not butler.datasetExists(
'fgcmFlaggedStars',
1019 fgcmcycle=self.config.cycleNumber-1):
1020 raise RuntimeError(
"Could not find fgcmFlaggedStars for previous cycle (%d) in repo!" %
1021 (self.config.cycleNumber-1))
1024 if self.config.doReferenceCalibration:
1025 if not butler.datasetExists(
'fgcmReferenceStars'):
1026 raise RuntimeError(
"Could not find fgcmReferenceStars in repo, and "
1027 "doReferenceCalibration is True.")
1029 def _loadParameters(self, butler):
1031 Load FGCM parameters from a previous fit cycle
1035 butler: `lsst.daf.persistence.Butler`
1039 inParInfo: `numpy.ndarray`
1040 Numpy array parameter information formatted for input to fgcm
1041 inParameters: `numpy.ndarray`
1042 Numpy array parameter values formatted for input to fgcm
1043 inSuperStar: `numpy.array`
1044 Superstar flat formatted for input to fgcm
1048 parCat = butler.get(
'fgcmFitParameters', fgcmcycle=self.config.cycleNumber-1)
1050 parLutFilterNames = np.array(parCat[0][
'lutFilterNames'].split(
','))
1051 parFitBands = np.array(parCat[0][
'fitBands'].split(
','))
1052 parNotFitBands = np.array(parCat[0][
'notFitBands'].split(
','))
1054 inParInfo = np.zeros(1, dtype=[(
'NCCD',
'i4'),
1055 (
'LUTFILTERNAMES', parLutFilterNames.dtype.str,
1056 (parLutFilterNames.size, )),
1057 (
'FITBANDS', parFitBands.dtype.str, (parFitBands.size, )),
1058 (
'NOTFITBANDS', parNotFitBands.dtype.str, (parNotFitBands.size, )),
1059 (
'LNTAUUNIT',
'f8'),
1060 (
'LNTAUSLOPEUNIT',
'f8'),
1061 (
'ALPHAUNIT',
'f8'),
1062 (
'LNPWVUNIT',
'f8'),
1063 (
'LNPWVSLOPEUNIT',
'f8'),
1064 (
'LNPWVQUADRATICUNIT',
'f8'),
1065 (
'LNPWVGLOBALUNIT',
'f8'),
1067 (
'QESYSUNIT',
'f8'),
1068 (
'FILTEROFFSETUNIT',
'f8'),
1069 (
'HASEXTERNALPWV',
'i2'),
1070 (
'HASEXTERNALTAU',
'i2')])
1071 inParInfo[
'NCCD'] = parCat[
'nCcd']
1072 inParInfo[
'LUTFILTERNAMES'][:] = parLutFilterNames
1073 inParInfo[
'FITBANDS'][:] = parFitBands
1074 inParInfo[
'NOTFITBANDS'][:] = parNotFitBands
1075 inParInfo[
'HASEXTERNALPWV'] = parCat[
'hasExternalPwv']
1076 inParInfo[
'HASEXTERNALTAU'] = parCat[
'hasExternalTau']
1078 inParams = np.zeros(1, dtype=[(
'PARALPHA',
'f8', (parCat[
'parAlpha'].size, )),
1079 (
'PARO3',
'f8', (parCat[
'parO3'].size, )),
1080 (
'PARLNTAUINTERCEPT',
'f8',
1081 (parCat[
'parLnTauIntercept'].size, )),
1082 (
'PARLNTAUSLOPE',
'f8',
1083 (parCat[
'parLnTauSlope'].size, )),
1084 (
'PARLNPWVINTERCEPT',
'f8',
1085 (parCat[
'parLnPwvIntercept'].size, )),
1086 (
'PARLNPWVSLOPE',
'f8',
1087 (parCat[
'parLnPwvSlope'].size, )),
1088 (
'PARLNPWVQUADRATIC',
'f8',
1089 (parCat[
'parLnPwvQuadratic'].size, )),
1090 (
'PARQESYSINTERCEPT',
'f8',
1091 (parCat[
'parQeSysIntercept'].size, )),
1092 (
'COMPQESYSSLOPE',
'f8',
1093 (parCat[
'compQeSysSlope'].size, )),
1094 (
'PARFILTEROFFSET',
'f8',
1095 (parCat[
'parFilterOffset'].size, )),
1096 (
'PARFILTEROFFSETFITFLAG',
'i2',
1097 (parCat[
'parFilterOffsetFitFlag'].size, )),
1098 (
'PARRETRIEVEDLNPWVSCALE',
'f8'),
1099 (
'PARRETRIEVEDLNPWVOFFSET',
'f8'),
1100 (
'PARRETRIEVEDLNPWVNIGHTLYOFFSET',
'f8',
1101 (parCat[
'parRetrievedLnPwvNightlyOffset'].size, )),
1102 (
'COMPABSTHROUGHPUT',
'f8',
1103 (parCat[
'compAbsThroughput'].size, )),
1104 (
'COMPREFOFFSET',
'f8',
1105 (parCat[
'compRefOffset'].size, )),
1106 (
'COMPREFSIGMA',
'f8',
1107 (parCat[
'compRefSigma'].size, )),
1108 (
'COMPMIRRORCHROMATICITY',
'f8',
1109 (parCat[
'compMirrorChromaticity'].size, )),
1110 (
'MIRRORCHROMATICITYPIVOT',
'f8',
1111 (parCat[
'mirrorChromaticityPivot'].size, )),
1112 (
'COMPAPERCORRPIVOT',
'f8',
1113 (parCat[
'compAperCorrPivot'].size, )),
1114 (
'COMPAPERCORRSLOPE',
'f8',
1115 (parCat[
'compAperCorrSlope'].size, )),
1116 (
'COMPAPERCORRSLOPEERR',
'f8',
1117 (parCat[
'compAperCorrSlopeErr'].size, )),
1118 (
'COMPAPERCORRRANGE',
'f8',
1119 (parCat[
'compAperCorrRange'].size, )),
1120 (
'COMPMODELERREXPTIMEPIVOT',
'f8',
1121 (parCat[
'compModelErrExptimePivot'].size, )),
1122 (
'COMPMODELERRFWHMPIVOT',
'f8',
1123 (parCat[
'compModelErrFwhmPivot'].size, )),
1124 (
'COMPMODELERRSKYPIVOT',
'f8',
1125 (parCat[
'compModelErrSkyPivot'].size, )),
1126 (
'COMPMODELERRPARS',
'f8',
1127 (parCat[
'compModelErrPars'].size, )),
1128 (
'COMPEXPGRAY',
'f8',
1129 (parCat[
'compExpGray'].size, )),
1130 (
'COMPVARGRAY',
'f8',
1131 (parCat[
'compVarGray'].size, )),
1132 (
'COMPNGOODSTARPEREXP',
'i4',
1133 (parCat[
'compNGoodStarPerExp'].size, )),
1134 (
'COMPSIGFGCM',
'f8',
1135 (parCat[
'compSigFgcm'].size, )),
1136 (
'COMPSIGMACAL',
'f8',
1137 (parCat[
'compSigmaCal'].size, )),
1138 (
'COMPRETRIEVEDLNPWV',
'f8',
1139 (parCat[
'compRetrievedLnPwv'].size, )),
1140 (
'COMPRETRIEVEDLNPWVRAW',
'f8',
1141 (parCat[
'compRetrievedLnPwvRaw'].size, )),
1142 (
'COMPRETRIEVEDLNPWVFLAG',
'i2',
1143 (parCat[
'compRetrievedLnPwvFlag'].size, )),
1144 (
'COMPRETRIEVEDTAUNIGHT',
'f8',
1145 (parCat[
'compRetrievedTauNight'].size, ))])
1147 inParams[
'PARALPHA'][:] = parCat[
'parAlpha'][0, :]
1148 inParams[
'PARO3'][:] = parCat[
'parO3'][0, :]
1149 inParams[
'PARLNTAUINTERCEPT'][:] = parCat[
'parLnTauIntercept'][0, :]
1150 inParams[
'PARLNTAUSLOPE'][:] = parCat[
'parLnTauSlope'][0, :]
1151 inParams[
'PARLNPWVINTERCEPT'][:] = parCat[
'parLnPwvIntercept'][0, :]
1152 inParams[
'PARLNPWVSLOPE'][:] = parCat[
'parLnPwvSlope'][0, :]
1153 inParams[
'PARLNPWVQUADRATIC'][:] = parCat[
'parLnPwvQuadratic'][0, :]
1154 inParams[
'PARQESYSINTERCEPT'][:] = parCat[
'parQeSysIntercept'][0, :]
1155 inParams[
'COMPQESYSSLOPE'][:] = parCat[
'compQeSysSlope'][0, :]
1156 inParams[
'PARFILTEROFFSET'][:] = parCat[
'parFilterOffset'][0, :]
1157 inParams[
'PARFILTEROFFSETFITFLAG'][:] = parCat[
'parFilterOffsetFitFlag'][0, :]
1158 inParams[
'PARRETRIEVEDLNPWVSCALE'] = parCat[
'parRetrievedLnPwvScale']
1159 inParams[
'PARRETRIEVEDLNPWVOFFSET'] = parCat[
'parRetrievedLnPwvOffset']
1160 inParams[
'PARRETRIEVEDLNPWVNIGHTLYOFFSET'][:] = parCat[
'parRetrievedLnPwvNightlyOffset'][0, :]
1161 inParams[
'COMPABSTHROUGHPUT'][:] = parCat[
'compAbsThroughput'][0, :]
1162 inParams[
'COMPREFOFFSET'][:] = parCat[
'compRefOffset'][0, :]
1163 inParams[
'COMPREFSIGMA'][:] = parCat[
'compRefSigma'][0, :]
1164 inParams[
'COMPMIRRORCHROMATICITY'][:] = parCat[
'compMirrorChromaticity'][0, :]
1165 inParams[
'MIRRORCHROMATICITYPIVOT'][:] = parCat[
'mirrorChromaticityPivot'][0, :]
1166 inParams[
'COMPAPERCORRPIVOT'][:] = parCat[
'compAperCorrPivot'][0, :]
1167 inParams[
'COMPAPERCORRSLOPE'][:] = parCat[
'compAperCorrSlope'][0, :]
1168 inParams[
'COMPAPERCORRSLOPEERR'][:] = parCat[
'compAperCorrSlopeErr'][0, :]
1169 inParams[
'COMPAPERCORRRANGE'][:] = parCat[
'compAperCorrRange'][0, :]
1170 inParams[
'COMPMODELERREXPTIMEPIVOT'][:] = parCat[
'compModelErrExptimePivot'][0, :]
1171 inParams[
'COMPMODELERRFWHMPIVOT'][:] = parCat[
'compModelErrFwhmPivot'][0, :]
1172 inParams[
'COMPMODELERRSKYPIVOT'][:] = parCat[
'compModelErrSkyPivot'][0, :]
1173 inParams[
'COMPMODELERRPARS'][:] = parCat[
'compModelErrPars'][0, :]
1174 inParams[
'COMPEXPGRAY'][:] = parCat[
'compExpGray'][0, :]
1175 inParams[
'COMPVARGRAY'][:] = parCat[
'compVarGray'][0, :]
1176 inParams[
'COMPNGOODSTARPEREXP'][:] = parCat[
'compNGoodStarPerExp'][0, :]
1177 inParams[
'COMPSIGFGCM'][:] = parCat[
'compSigFgcm'][0, :]
1178 inParams[
'COMPSIGMACAL'][:] = parCat[
'compSigmaCal'][0, :]
1179 inParams[
'COMPRETRIEVEDLNPWV'][:] = parCat[
'compRetrievedLnPwv'][0, :]
1180 inParams[
'COMPRETRIEVEDLNPWVRAW'][:] = parCat[
'compRetrievedLnPwvRaw'][0, :]
1181 inParams[
'COMPRETRIEVEDLNPWVFLAG'][:] = parCat[
'compRetrievedLnPwvFlag'][0, :]
1182 inParams[
'COMPRETRIEVEDTAUNIGHT'][:] = parCat[
'compRetrievedTauNight'][0, :]
1184 inSuperStar = np.zeros(parCat[
'superstarSize'][0, :], dtype=
'f8')
1185 inSuperStar[:, :, :, :] = parCat[
'superstar'][0, :].reshape(inSuperStar.shape)
1187 return (inParInfo, inParams, inSuperStar)
1189 def _persistFgcmDatasets(self, butler, fgcmFitCycle):
1191 Persist FGCM datasets through the butler.
1195 butler: `lsst.daf.persistence.Butler`
1196 fgcmFitCycle: `lsst.fgcm.FgcmFitCycle`
1197 Fgcm Fit cycle object
1201 parInfo, pars = fgcmFitCycle.fgcmPars.parsToArrays()
1206 lutFilterNameString = comma.join([n.decode(
'utf-8')
1207 for n
in parInfo[
'LUTFILTERNAMES'][0]])
1208 fitBandString = comma.join([n.decode(
'utf-8')
1209 for n
in parInfo[
'FITBANDS'][0]])
1210 notFitBandString = comma.join([n.decode(
'utf-8')
1211 for n
in parInfo[
'NOTFITBANDS'][0]])
1213 parSchema = self.
_makeParSchema(parInfo, pars, fgcmFitCycle.fgcmPars.parSuperStarFlat,
1214 lutFilterNameString, fitBandString, notFitBandString)
1216 fgcmFitCycle.fgcmPars.parSuperStarFlat,
1217 lutFilterNameString, fitBandString, notFitBandString)
1219 butler.put(parCat,
'fgcmFitParameters', fgcmcycle=self.config.cycleNumber)
1225 flagStarStruct = fgcmFitCycle.fgcmStars.getFlagStarIndices()
1228 butler.put(flagStarCat,
'fgcmFlaggedStars', fgcmcycle=self.config.cycleNumber)
1232 superStarChebSize = fgcmFitCycle.fgcmZpts.zpStruct[
'FGCM_FZPT_SSTAR_CHEB'].shape[1]
1233 zptChebSize = fgcmFitCycle.fgcmZpts.zpStruct[
'FGCM_FZPT_CHEB'].shape[1]
1236 zptCat =
makeZptCat(zptSchema, fgcmFitCycle.fgcmZpts.zpStruct)
1238 butler.put(zptCat,
'fgcmZeropoints', fgcmcycle=self.config.cycleNumber)
1243 atmCat =
makeAtmCat(atmSchema, fgcmFitCycle.fgcmZpts.atmStruct)
1245 butler.put(atmCat,
'fgcmAtmosphereParameters', fgcmcycle=self.config.cycleNumber)
1249 stdStruct, goodBands = fgcmFitCycle.fgcmStars.retrieveStdStarCatalog(fgcmFitCycle.fgcmPars)
1251 stdCat =
makeStdCat(stdSchema, stdStruct, goodBands)
1253 butler.put(stdCat,
'fgcmStandardStars', fgcmcycle=self.config.cycleNumber)
1255 def _makeParSchema(self, parInfo, pars, parSuperStarFlat,
1256 lutFilterNameString, fitBandString, notFitBandString):
1258 Make the parameter persistence schema
1262 parInfo: `numpy.ndarray`
1263 Parameter information returned by fgcm
1264 pars: `numpy.ndarray`
1265 Parameter values returned by fgcm
1266 parSuperStarFlat: `numpy.array`
1267 Superstar flat values returned by fgcm
1268 lutFilterNameString: `str`
1269 Combined string of all the lutFilterNames
1270 fitBandString: `str`
1271 Combined string of all the fitBands
1272 notFitBandString: `str`
1273 Combined string of all the bands not used in the fit
1277 parSchema: `afwTable.schema`
1283 parSchema.addField(
'nCcd', type=np.int32, doc=
'Number of CCDs')
1284 parSchema.addField(
'lutFilterNames', type=str, doc=
'LUT Filter names in parameter file',
1285 size=len(lutFilterNameString))
1286 parSchema.addField(
'fitBands', type=str, doc=
'Bands that were fit',
1287 size=len(fitBandString))
1288 parSchema.addField(
'notFitBands', type=str, doc=
'Bands that were not fit',
1289 size=len(notFitBandString))
1290 parSchema.addField(
'lnTauUnit', type=np.float64, doc=
'Step units for ln(AOD)')
1291 parSchema.addField(
'lnTauSlopeUnit', type=np.float64,
1292 doc=
'Step units for ln(AOD) slope')
1293 parSchema.addField(
'alphaUnit', type=np.float64, doc=
'Step units for alpha')
1294 parSchema.addField(
'lnPwvUnit', type=np.float64, doc=
'Step units for ln(pwv)')
1295 parSchema.addField(
'lnPwvSlopeUnit', type=np.float64,
1296 doc=
'Step units for ln(pwv) slope')
1297 parSchema.addField(
'lnPwvQuadraticUnit', type=np.float64,
1298 doc=
'Step units for ln(pwv) quadratic term')
1299 parSchema.addField(
'lnPwvGlobalUnit', type=np.float64,
1300 doc=
'Step units for global ln(pwv) parameters')
1301 parSchema.addField(
'o3Unit', type=np.float64, doc=
'Step units for O3')
1302 parSchema.addField(
'qeSysUnit', type=np.float64, doc=
'Step units for mirror gray')
1303 parSchema.addField(
'filterOffsetUnit', type=np.float64, doc=
'Step units for filter offset')
1304 parSchema.addField(
'hasExternalPwv', type=np.int32, doc=
'Parameters fit using external pwv')
1305 parSchema.addField(
'hasExternalTau', type=np.int32, doc=
'Parameters fit using external tau')
1308 parSchema.addField(
'parAlpha', type=
'ArrayD', doc=
'Alpha parameter vector',
1309 size=pars[
'PARALPHA'].size)
1310 parSchema.addField(
'parO3', type=
'ArrayD', doc=
'O3 parameter vector',
1311 size=pars[
'PARO3'].size)
1312 parSchema.addField(
'parLnTauIntercept', type=
'ArrayD',
1313 doc=
'ln(Tau) intercept parameter vector',
1314 size=pars[
'PARLNTAUINTERCEPT'].size)
1315 parSchema.addField(
'parLnTauSlope', type=
'ArrayD',
1316 doc=
'ln(Tau) slope parameter vector',
1317 size=pars[
'PARLNTAUSLOPE'].size)
1318 parSchema.addField(
'parLnPwvIntercept', type=
'ArrayD', doc=
'ln(pwv) intercept parameter vector',
1319 size=pars[
'PARLNPWVINTERCEPT'].size)
1320 parSchema.addField(
'parLnPwvSlope', type=
'ArrayD', doc=
'ln(pwv) slope parameter vector',
1321 size=pars[
'PARLNPWVSLOPE'].size)
1322 parSchema.addField(
'parLnPwvQuadratic', type=
'ArrayD', doc=
'ln(pwv) quadratic parameter vector',
1323 size=pars[
'PARLNPWVQUADRATIC'].size)
1324 parSchema.addField(
'parQeSysIntercept', type=
'ArrayD', doc=
'Mirror gray intercept parameter vector',
1325 size=pars[
'PARQESYSINTERCEPT'].size)
1326 parSchema.addField(
'compQeSysSlope', type=
'ArrayD', doc=
'Mirror gray slope parameter vector',
1327 size=pars[0][
'COMPQESYSSLOPE'].size)
1328 parSchema.addField(
'parFilterOffset', type=
'ArrayD', doc=
'Filter offset parameter vector',
1329 size=pars[
'PARFILTEROFFSET'].size)
1330 parSchema.addField(
'parFilterOffsetFitFlag', type=
'ArrayI', doc=
'Filter offset parameter fit flag',
1331 size=pars[
'PARFILTEROFFSETFITFLAG'].size)
1332 parSchema.addField(
'parRetrievedLnPwvScale', type=np.float64,
1333 doc=
'Global scale for retrieved ln(pwv)')
1334 parSchema.addField(
'parRetrievedLnPwvOffset', type=np.float64,
1335 doc=
'Global offset for retrieved ln(pwv)')
1336 parSchema.addField(
'parRetrievedLnPwvNightlyOffset', type=
'ArrayD',
1337 doc=
'Nightly offset for retrieved ln(pwv)',
1338 size=pars[
'PARRETRIEVEDLNPWVNIGHTLYOFFSET'].size)
1339 parSchema.addField(
'compAbsThroughput', type=
'ArrayD',
1340 doc=
'Absolute throughput (relative to transmission curves)',
1341 size=pars[
'COMPABSTHROUGHPUT'].size)
1342 parSchema.addField(
'compRefOffset', type=
'ArrayD',
1343 doc=
'Offset between reference stars and calibrated stars',
1344 size=pars[
'COMPREFOFFSET'].size)
1345 parSchema.addField(
'compRefSigma', type=
'ArrayD',
1346 doc=
'Width of reference star/calibrated star distribution',
1347 size=pars[
'COMPREFSIGMA'].size)
1348 parSchema.addField(
'compMirrorChromaticity', type=
'ArrayD',
1349 doc=
'Computed mirror chromaticity terms',
1350 size=pars[
'COMPMIRRORCHROMATICITY'].size)
1351 parSchema.addField(
'mirrorChromaticityPivot', type=
'ArrayD',
1352 doc=
'Mirror chromaticity pivot mjd',
1353 size=pars[
'MIRRORCHROMATICITYPIVOT'].size)
1354 parSchema.addField(
'compAperCorrPivot', type=
'ArrayD', doc=
'Aperture correction pivot',
1355 size=pars[
'COMPAPERCORRPIVOT'].size)
1356 parSchema.addField(
'compAperCorrSlope', type=
'ArrayD', doc=
'Aperture correction slope',
1357 size=pars[
'COMPAPERCORRSLOPE'].size)
1358 parSchema.addField(
'compAperCorrSlopeErr', type=
'ArrayD', doc=
'Aperture correction slope error',
1359 size=pars[
'COMPAPERCORRSLOPEERR'].size)
1360 parSchema.addField(
'compAperCorrRange', type=
'ArrayD', doc=
'Aperture correction range',
1361 size=pars[
'COMPAPERCORRRANGE'].size)
1362 parSchema.addField(
'compModelErrExptimePivot', type=
'ArrayD', doc=
'Model error exptime pivot',
1363 size=pars[
'COMPMODELERREXPTIMEPIVOT'].size)
1364 parSchema.addField(
'compModelErrFwhmPivot', type=
'ArrayD', doc=
'Model error fwhm pivot',
1365 size=pars[
'COMPMODELERRFWHMPIVOT'].size)
1366 parSchema.addField(
'compModelErrSkyPivot', type=
'ArrayD', doc=
'Model error sky pivot',
1367 size=pars[
'COMPMODELERRSKYPIVOT'].size)
1368 parSchema.addField(
'compModelErrPars', type=
'ArrayD', doc=
'Model error parameters',
1369 size=pars[
'COMPMODELERRPARS'].size)
1370 parSchema.addField(
'compExpGray', type=
'ArrayD', doc=
'Computed exposure gray',
1371 size=pars[
'COMPEXPGRAY'].size)
1372 parSchema.addField(
'compVarGray', type=
'ArrayD', doc=
'Computed exposure variance',
1373 size=pars[
'COMPVARGRAY'].size)
1374 parSchema.addField(
'compNGoodStarPerExp', type=
'ArrayI',
1375 doc=
'Computed number of good stars per exposure',
1376 size=pars[
'COMPNGOODSTARPEREXP'].size)
1377 parSchema.addField(
'compSigFgcm', type=
'ArrayD', doc=
'Computed sigma_fgcm (intrinsic repeatability)',
1378 size=pars[
'COMPSIGFGCM'].size)
1379 parSchema.addField(
'compSigmaCal', type=
'ArrayD', doc=
'Computed sigma_cal (systematic error floor)',
1380 size=pars[
'COMPSIGMACAL'].size)
1381 parSchema.addField(
'compRetrievedLnPwv', type=
'ArrayD', doc=
'Retrieved ln(pwv) (smoothed)',
1382 size=pars[
'COMPRETRIEVEDLNPWV'].size)
1383 parSchema.addField(
'compRetrievedLnPwvRaw', type=
'ArrayD', doc=
'Retrieved ln(pwv) (raw)',
1384 size=pars[
'COMPRETRIEVEDLNPWVRAW'].size)
1385 parSchema.addField(
'compRetrievedLnPwvFlag', type=
'ArrayI', doc=
'Retrieved ln(pwv) Flag',
1386 size=pars[
'COMPRETRIEVEDLNPWVFLAG'].size)
1387 parSchema.addField(
'compRetrievedTauNight', type=
'ArrayD', doc=
'Retrieved tau (per night)',
1388 size=pars[
'COMPRETRIEVEDTAUNIGHT'].size)
1390 parSchema.addField(
'superstarSize', type=
'ArrayI', doc=
'Superstar matrix size',
1392 parSchema.addField(
'superstar', type=
'ArrayD', doc=
'Superstar matrix (flattened)',
1393 size=parSuperStarFlat.size)
1397 def _makeParCatalog(self, parSchema, parInfo, pars, parSuperStarFlat,
1398 lutFilterNameString, fitBandString, notFitBandString):
1400 Make the FGCM parameter catalog for persistence
1404 parSchema: `lsst.afw.table.Schema`
1405 Parameter catalog schema
1406 pars: `numpy.ndarray`
1407 FGCM parameters to put into parCat
1408 parSuperStarFlat: `numpy.array`
1409 FGCM superstar flat array to put into parCat
1410 lutFilterNameString: `str`
1411 Combined string of all the lutFilterNames
1412 fitBandString: `str`
1413 Combined string of all the fitBands
1414 notFitBandString: `str`
1415 Combined string of all the bands not used in the fit
1419 parCat: `afwTable.BasicCatalog`
1420 Atmosphere and instrumental model parameter catalog for persistence
1428 rec = parCat.addNew()
1431 rec[
'nCcd'] = parInfo[
'NCCD']
1432 rec[
'lutFilterNames'] = lutFilterNameString
1433 rec[
'fitBands'] = fitBandString
1434 rec[
'notFitBands'] = notFitBandString
1436 rec[
'hasExternalPwv'] = 0
1437 rec[
'hasExternalTau'] = 0
1441 scalarNames = [
'parRetrievedLnPwvScale',
'parRetrievedLnPwvOffset']
1443 arrNames = [
'parAlpha',
'parO3',
'parLnTauIntercept',
'parLnTauSlope',
1444 'parLnPwvIntercept',
'parLnPwvSlope',
'parLnPwvQuadratic',
1445 'parQeSysIntercept',
'compQeSysSlope',
1446 'parRetrievedLnPwvNightlyOffset',
'compAperCorrPivot',
1447 'parFilterOffset',
'parFilterOffsetFitFlag',
1448 'compAbsThroughput',
'compRefOffset',
'compRefSigma',
1449 'compMirrorChromaticity',
'mirrorChromaticityPivot',
1450 'compAperCorrSlope',
'compAperCorrSlopeErr',
'compAperCorrRange',
1451 'compModelErrExptimePivot',
'compModelErrFwhmPivot',
1452 'compModelErrSkyPivot',
'compModelErrPars',
1453 'compExpGray',
'compVarGray',
'compNGoodStarPerExp',
'compSigFgcm',
1455 'compRetrievedLnPwv',
'compRetrievedLnPwvRaw',
'compRetrievedLnPwvFlag',
1456 'compRetrievedTauNight']
1458 for scalarName
in scalarNames:
1459 rec[scalarName] = pars[scalarName.upper()]
1461 for arrName
in arrNames:
1462 rec[arrName][:] = np.atleast_1d(pars[0][arrName.upper()])[:]
1465 rec[
'superstarSize'][:] = parSuperStarFlat.shape
1466 rec[
'superstar'][:] = parSuperStarFlat.flatten()
1470 def _makeFlagStarSchema(self):
1472 Make the flagged-stars schema
1476 flagStarSchema: `lsst.afw.table.Schema`
1481 flagStarSchema.addField(
'objId', type=np.int32, doc=
'FGCM object id')
1482 flagStarSchema.addField(
'objFlag', type=np.int32, doc=
'FGCM object flag')
1484 return flagStarSchema
1486 def _makeFlagStarCat(self, flagStarSchema, flagStarStruct):
1488 Make the flagged star catalog for persistence
1492 flagStarSchema: `lsst.afw.table.Schema`
1494 flagStarStruct: `numpy.ndarray`
1495 Flagged star structure from fgcm
1499 flagStarCat: `lsst.afw.table.BaseCatalog`
1500 Flagged star catalog for persistence
1504 flagStarCat.reserve(flagStarStruct.size)
1505 for i
in range(flagStarStruct.size):
1506 flagStarCat.addNew()
1508 flagStarCat[
'objId'][:] = flagStarStruct[
'OBJID']
1509 flagStarCat[
'objFlag'][:] = flagStarStruct[
'OBJFLAG']