25 import lsst.pex.config
as pexConfig
35 from .makeKernelBasisList
import makeKernelBasisList
36 from .psfMatch
import PsfMatchTask, PsfMatchConfigDF, PsfMatchConfigAL
37 from .
import utils
as diffimUtils
38 from .
import diffimLib
39 from .
import diffimTools
42 __all__ = [
"ImagePsfMatchConfig",
"ImagePsfMatchTask",
"subtractAlgorithmRegistry"]
44 sigma2fwhm = 2.*np.sqrt(2.*np.log(2.))
48 """Configuration for image-to-image Psf matching.
50 kernel = pexConfig.ConfigChoiceField(
58 selectDetection = pexConfig.ConfigurableField(
59 target=SourceDetectionTask,
60 doc=
"Initial detections used to feed stars to kernel fitting",
62 selectMeasurement = pexConfig.ConfigurableField(
63 target=SingleFrameMeasurementTask,
64 doc=
"Initial measurements used to feed stars to kernel fitting",
74 self.
selectMeasurement.algorithms.names = (
'base_SdssCentroid',
'base_PsfFlux',
'base_PixelFlags',
75 'base_SdssShape',
'base_GaussianFlux',
'base_SkyCoord')
82 """Psf-match two MaskedImages or Exposures using the sources in the images.
87 Arguments to be passed to lsst.ip.diffim.PsfMatchTask.__init__
89 Keyword arguments to be passed to lsst.ip.diffim.PsfMatchTask.__init__
93 Upon initialization, the kernel configuration is defined by self.config.kernel.active.
94 The task creates an lsst.afw.math.Warper from the subConfig self.config.kernel.active.warpingConfig.
95 A schema for the selection and measurement of candidate lsst.ip.diffim.KernelCandidates is
96 defined, and used to initize subTasks selectDetection (for candidate detection) and selectMeasurement
97 (for candidate measurement).
101 Build a Psf-matching kernel using two input images, either as MaskedImages (in which case they need
102 to be astrometrically aligned) or Exposures (in which case astrometric alignment will happen by
103 default but may be turned off). This requires a list of input Sources which may be provided
104 by the calling Task; if not, the Task will perform a coarse source detection
105 and selection for this purpose. Sources are vetted for signal-to-noise and masked pixels
106 (in both the template and science image), and substamps around each acceptable
107 source are extracted and used to create an instance of KernelCandidate.
108 Each KernelCandidate is then placed within a lsst.afw.math.SpatialCellSet, which is used by an ensemble of
109 lsst.afw.math.CandidateVisitor instances to build the Psf-matching kernel. These visitors include, in
110 the order that they are called: BuildSingleKernelVisitor, KernelSumVisitor, BuildSpatialKernelVisitor,
111 and AssessSpatialKernelVisitor.
113 Sigma clipping of KernelCandidates is performed as follows:
115 - BuildSingleKernelVisitor, using the substamp diffim residuals from the per-source kernel fit,
116 if PsfMatchConfig.singleKernelClipping is True
117 - KernelSumVisitor, using the mean and standard deviation of the kernel sum from all candidates,
118 if PsfMatchConfig.kernelSumClipping is True
119 - AssessSpatialKernelVisitor, using the substamp diffim ressiduals from the spatial kernel fit,
120 if PsfMatchConfig.spatialKernelClipping is True
122 The actual solving for the kernel (and differential background model) happens in
123 lsst.ip.diffim.PsfMatchTask._solve. This involves a loop over the SpatialCellSet that first builds the
124 per-candidate matching kernel for the requested number of KernelCandidates per cell
125 (PsfMatchConfig.nStarPerCell). The quality of this initial per-candidate difference image is examined,
126 using moments of the pixel residuals in the difference image normalized by the square root of the variance
127 (i.e. sigma); ideally this should follow a normal (0, 1) distribution,
128 but the rejection thresholds are set
129 by the config (PsfMatchConfig.candidateResidualMeanMax and PsfMatchConfig.candidateResidualStdMax).
130 All candidates that pass this initial build are then examined en masse to find the
131 mean/stdev of the kernel sums across all candidates.
132 Objects that are significantly above or below the mean,
133 typically due to variability or sources that are saturated in one image but not the other,
134 are also rejected.This threshold is defined by PsfMatchConfig.maxKsumSigma.
135 Finally, a spatial model is built using all currently-acceptable candidates,
136 and the spatial model used to derive a second set of (spatial) residuals
137 which are again used to reject bad candidates, using the same thresholds as above.
141 There is no run() method for this Task. Instead there are 4 methods that
142 may be used to invoke the Psf-matching. These are
143 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.matchMaskedImages`,
144 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.subtractMaskedImages`,
145 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.matchExposures`, and
146 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.subtractExposures`.
148 The methods that operate on lsst.afw.image.MaskedImage require that the images already be astrometrically
149 aligned, and are the same shape. The methods that operate on lsst.afw.image.Exposure allow for the
150 input images to be misregistered and potentially be different sizes; by default a
151 lsst.afw.math.LanczosWarpingKernel is used to perform the astrometric alignment. The methods
152 that "match" images return a Psf-matched image, while the methods that "subtract" images
153 return a Psf-matched and template subtracted image.
155 See each method's returned lsst.pipe.base.Struct for more details.
159 The lsst.pipe.base.cmdLineTask.CmdLineTask command line task interface supports a
160 flag -d/--debug to import debug.py from your PYTHONPATH. The relevant contents of debug.py
161 for this Task include:
168 di = lsstDebug.getInfo(name)
169 if name == "lsst.ip.diffim.psfMatch":
170 di.display = True # enable debug output
171 di.maskTransparency = 80 # display mask transparency
172 di.displayCandidates = True # show all the candidates and residuals
173 di.displayKernelBasis = False # show kernel basis functions
174 di.displayKernelMosaic = True # show kernel realized across the image
175 di.plotKernelSpatialModel = False # show coefficients of spatial model
176 di.showBadCandidates = True # show the bad candidates (red) along with good (green)
177 elif name == "lsst.ip.diffim.imagePsfMatch":
178 di.display = True # enable debug output
179 di.maskTransparency = 30 # display mask transparency
180 di.displayTemplate = True # show full (remapped) template
181 di.displaySciIm = True # show science image to match to
182 di.displaySpatialCells = True # show spatial cells
183 di.displayDiffIm = True # show difference image
184 di.showBadCandidates = True # show the bad candidates (red) along with good (green)
185 elif name == "lsst.ip.diffim.diaCatalogSourceSelector":
186 di.display = False # enable debug output
187 di.maskTransparency = 30 # display mask transparency
188 di.displayExposure = True # show exposure with candidates indicated
189 di.pauseAtEnd = False # pause when done
191 lsstDebug.Info = DebugInfo
194 Note that if you want addional logging info, you may add to your scripts:
198 import lsst.log.utils as logUtils
199 logUtils.traceSetAt("ip.diffim", 4)
203 A complete example of using ImagePsfMatchTask
205 This code is imagePsfMatchTask.py in the examples directory, and can be run as e.g.
209 examples/imagePsfMatchTask.py --debug
210 examples/imagePsfMatchTask.py --debug --mode="matchExposures"
211 examples/imagePsfMatchTask.py --debug --template /path/to/templateExp.fits
212 --science /path/to/scienceExp.fits
214 Create a subclass of ImagePsfMatchTask that allows us to either match exposures, or subtract exposures:
218 class MyImagePsfMatchTask(ImagePsfMatchTask):
220 def __init__(self, args, kwargs):
221 ImagePsfMatchTask.__init__(self, args, kwargs)
223 def run(self, templateExp, scienceExp, mode):
224 if mode == "matchExposures":
225 return self.matchExposures(templateExp, scienceExp)
226 elif mode == "subtractExposures":
227 return self.subtractExposures(templateExp, scienceExp)
229 And allow the user the freedom to either run the script in default mode,
230 or point to their own images on disk.
231 Note that these images must be readable as an lsst.afw.image.Exposure.
233 We have enabled some minor display debugging in this script via the --debug option. However, if you
234 have an lsstDebug debug.py in your PYTHONPATH you will get additional debugging displays. The following
235 block checks for this script:
242 # Since I am displaying 2 images here, set the starting frame number for the LSST debug LSST
243 debug.lsstDebug.frame = 3
244 except ImportError as e:
245 print(e, file=sys.stderr)
247 Finally, we call a run method that we define below.
248 First set up a Config and modify some of the parameters.
249 E.g. use an "Alard-Lupton" sum-of-Gaussian basis,
250 fit for a differential background, and use low order spatial
251 variation in the kernel and background:
257 # Create the Config and use sum of gaussian basis
259 config = ImagePsfMatchTask.ConfigClass()
260 config.kernel.name = "AL"
261 config.kernel.active.fitForBackground = True
262 config.kernel.active.spatialKernelOrder = 1
263 config.kernel.active.spatialBgOrder = 0
265 Make sure the images (if any) that were sent to the script exist on disk and are readable. If no images
266 are sent, make some fake data up for the sake of this example script (have a look at the code if you want
267 more details on generateFakeImages):
271 # Run the requested method of the Task
272 if args.template is not None and args.science is not None:
273 if not os.path.isfile(args.template):
274 raise Exception("Template image %s does not exist" % (args.template))
275 if not os.path.isfile(args.science):
276 raise Exception("Science image %s does not exist" % (args.science))
278 templateExp = afwImage.ExposureF(args.template)
279 except Exception as e:
280 raise Exception("Cannot read template image %s" % (args.template))
282 scienceExp = afwImage.ExposureF(args.science)
283 except Exception as e:
284 raise Exception("Cannot read science image %s" % (args.science))
286 templateExp, scienceExp = generateFakeImages()
287 config.kernel.active.sizeCellX = 128
288 config.kernel.active.sizeCellY = 128
290 Create and run the Task:
295 psfMatchTask = MyImagePsfMatchTask(config=config)
297 result = psfMatchTask.run(templateExp, scienceExp, args.mode)
299 And finally provide some optional debugging displays:
304 # See if the LSST debug has incremented the frame number; if not start with frame 3
306 frame = debug.lsstDebug.frame + 1
309 afwDisplay.Display(frame=frame).mtv(result.matchedExposure,
310 title="Example script: Matched Template Image")
311 if "subtractedExposure" in result.getDict():
312 afwDisplay.Display(frame=frame + 1).mtv(result.subtractedExposure,
313 title="Example script: Subtracted Image")
316 ConfigClass = ImagePsfMatchConfig
319 """Create the ImagePsfMatchTask.
321 PsfMatchTask.__init__(self, *args, **kwargs)
323 self.
_warper = afwMath.Warper.fromConfig(self.
kConfig.warpingConfig)
330 self.makeSubtask(
"selectDetection", schema=self.
selectSchema)
334 """Return the FWHM in pixels of a Psf.
336 sigPix = psf.computeShape().getDeterminantRadius()
337 return sigPix*sigma2fwhm
341 templateFwhmPix=None, scienceFwhmPix=None,
342 candidateList=None, doWarping=True, convolveTemplate=True):
343 """Warp and PSF-match an exposure to the reference.
345 Do the following, in order:
347 - Warp templateExposure to match scienceExposure,
348 if doWarping True and their WCSs do not already match
349 - Determine a PSF matching kernel and differential background model
350 that matches templateExposure to scienceExposure
351 - Convolve templateExposure by PSF matching kernel
355 templateExposure : `lsst.afw.image.Exposure`
356 Exposure to warp and PSF-match to the reference masked image
357 scienceExposure : `lsst.afw.image.Exposure`
358 Exposure whose WCS and PSF are to be matched to
359 templateFwhmPix :`float`
360 FWHM (in pixels) of the Psf in the template image (image to convolve)
361 scienceFwhmPix : `float`
362 FWHM (in pixels) of the Psf in the science image
363 candidateList : `list`, optional
364 a list of footprints/maskedImages for kernel candidates;
365 if `None` then source detection is run.
367 - Currently supported: list of Footprints or measAlg.PsfCandidateF
370 what to do if ``templateExposure`` and ``scienceExposure`` WCSs do not match:
372 - if `True` then warp ``templateExposure`` to match ``scienceExposure``
373 - if `False` then raise an Exception
375 convolveTemplate : `bool`
376 Whether to convolve the template image or the science image:
378 - if `True`, ``templateExposure`` is warped if doWarping,
379 ``templateExposure`` is convolved
380 - if `False`, ``templateExposure`` is warped if doWarping,
381 ``scienceExposure`` is convolved
385 results : `lsst.pipe.base.Struct`
386 An `lsst.pipe.base.Struct` containing these fields:
388 - ``matchedImage`` : the PSF-matched exposure =
389 Warped ``templateExposure`` convolved by psfMatchingKernel. This has:
391 - the same parent bbox, Wcs and PhotoCalib as scienceExposure
392 - the same filter as templateExposure
393 - no Psf (because the PSF-matching process does not compute one)
395 - ``psfMatchingKernel`` : the PSF matching kernel
396 - ``backgroundModel`` : differential background model
397 - ``kernelCellSet`` : SpatialCellSet used to solve for the PSF matching kernel
402 Raised if doWarping is False and ``templateExposure`` and
403 ``scienceExposure`` WCSs do not match
405 if not self.
_validateWcs(templateExposure, scienceExposure):
407 self.log.
info(
"Astrometrically registering template to science image")
408 templatePsf = templateExposure.getPsf()
411 scienceExposure.getWcs())
412 psfWarped =
WarpedPsf(templatePsf, xyTransform)
415 destBBox=scienceExposure.getBBox())
416 templateExposure.setPsf(psfWarped)
418 self.log.
error(
"ERROR: Input images not registered")
419 raise RuntimeError(
"Input images not registered")
421 if templateFwhmPix
is None:
422 if not templateExposure.hasPsf():
423 self.log.
warn(
"No estimate of Psf FWHM for template image")
425 templateFwhmPix = self.
getFwhmPix(templateExposure.getPsf())
426 self.log.
info(
"templateFwhmPix: {}".
format(templateFwhmPix))
428 if scienceFwhmPix
is None:
429 if not scienceExposure.hasPsf():
430 self.log.
warn(
"No estimate of Psf FWHM for science image")
432 scienceFwhmPix = self.
getFwhmPix(scienceExposure.getPsf())
433 self.log.
info(
"scienceFwhmPix: {}".
format(scienceFwhmPix))
438 templateExposure, scienceExposure, kernelSize, candidateList)
440 templateExposure.getMaskedImage(), scienceExposure.getMaskedImage(), candidateList,
441 templateFwhmPix=templateFwhmPix, scienceFwhmPix=scienceFwhmPix)
445 templateExposure, scienceExposure, kernelSize, candidateList)
447 scienceExposure.getMaskedImage(), templateExposure.getMaskedImage(), candidateList,
448 templateFwhmPix=scienceFwhmPix, scienceFwhmPix=templateFwhmPix)
451 psfMatchedExposure.setFilter(templateExposure.getFilter())
452 psfMatchedExposure.setPhotoCalib(scienceExposure.getPhotoCalib())
453 results.warpedExposure = templateExposure
454 results.matchedExposure = psfMatchedExposure
459 templateFwhmPix=None, scienceFwhmPix=None):
460 """PSF-match a MaskedImage (templateMaskedImage) to a reference MaskedImage (scienceMaskedImage).
462 Do the following, in order:
464 - Determine a PSF matching kernel and differential background model
465 that matches templateMaskedImage to scienceMaskedImage
466 - Convolve templateMaskedImage by the PSF matching kernel
470 templateMaskedImage : `lsst.afw.image.MaskedImage`
471 masked image to PSF-match to the reference masked image;
472 must be warped to match the reference masked image
473 scienceMaskedImage : `lsst.afw.image.MaskedImage`
474 maskedImage whose PSF is to be matched to
475 templateFwhmPix : `float`
476 FWHM (in pixels) of the Psf in the template image (image to convolve)
477 scienceFwhmPix : `float`
478 FWHM (in pixels) of the Psf in the science image
479 candidateList : `list`, optional
480 A list of footprints/maskedImages for kernel candidates;
481 if `None` then source detection is run.
483 - Currently supported: list of Footprints or measAlg.PsfCandidateF
488 An `lsst.pipe.base.Struct` containing these fields:
490 - psfMatchedMaskedImage: the PSF-matched masked image =
491 ``templateMaskedImage`` convolved with psfMatchingKernel.
492 This has the same xy0, dimensions and wcs as ``scienceMaskedImage``.
493 - psfMatchingKernel: the PSF matching kernel
494 - backgroundModel: differential background model
495 - kernelCellSet: SpatialCellSet used to solve for the PSF matching kernel
500 Raised if input images have different dimensions
506 displaySpatialCells =
lsstDebug.Info(__name__).displaySpatialCells
508 if not maskTransparency:
511 afwDisplay.setDefaultMaskTransparency(maskTransparency)
513 if not candidateList:
514 raise RuntimeError(
"Candidate list must be populated by makeCandidateList")
516 if not self.
_validateSize(templateMaskedImage, scienceMaskedImage):
517 self.log.
error(
"ERROR: Input images different size")
518 raise RuntimeError(
"Input images different size")
520 if display
and displayTemplate:
521 disp = afwDisplay.Display(frame=lsstDebug.frame)
522 disp.mtv(templateMaskedImage, title=
"Image to convolve")
525 if display
and displaySciIm:
526 disp = afwDisplay.Display(frame=lsstDebug.frame)
527 disp.mtv(scienceMaskedImage, title=
"Image to not convolve")
534 if display
and displaySpatialCells:
535 diffimUtils.showKernelSpatialCells(scienceMaskedImage, kernelCellSet,
536 symb=
"o", ctype=afwDisplay.CYAN, ctypeUnused=afwDisplay.YELLOW,
537 ctypeBad=afwDisplay.RED, size=4, frame=lsstDebug.frame,
538 title=
"Image to not convolve")
541 if templateFwhmPix
and scienceFwhmPix:
542 self.log.
info(
"Matching Psf FWHM %.2f -> %.2f pix", templateFwhmPix, scienceFwhmPix)
544 if self.
kConfig.useBicForKernelBasis:
549 bicDegrees = nbe(tmpKernelCellSet, self.log)
551 alardDegGauss=bicDegrees[0], metadata=self.metadata)
555 metadata=self.metadata)
557 spatialSolution, psfMatchingKernel, backgroundModel = self.
_solve(kernelCellSet, basisList)
559 psfMatchedMaskedImage = afwImage.MaskedImageF(templateMaskedImage.getBBox())
561 afwMath.convolve(psfMatchedMaskedImage, templateMaskedImage, psfMatchingKernel, doNormalize)
562 return pipeBase.Struct(
563 matchedImage=psfMatchedMaskedImage,
564 psfMatchingKernel=psfMatchingKernel,
565 backgroundModel=backgroundModel,
566 kernelCellSet=kernelCellSet,
571 templateFwhmPix=None, scienceFwhmPix=None,
572 candidateList=None, doWarping=True, convolveTemplate=True):
573 """Register, Psf-match and subtract two Exposures.
575 Do the following, in order:
577 - Warp templateExposure to match scienceExposure, if their WCSs do not already match
578 - Determine a PSF matching kernel and differential background model
579 that matches templateExposure to scienceExposure
580 - PSF-match templateExposure to scienceExposure
581 - Compute subtracted exposure (see return values for equation).
585 templateExposure : `lsst.afw.image.Exposure`
586 Exposure to PSF-match to scienceExposure
587 scienceExposure : `lsst.afw.image.Exposure`
589 templateFwhmPix : `float`
590 FWHM (in pixels) of the Psf in the template image (image to convolve)
591 scienceFwhmPix : `float`
592 FWHM (in pixels) of the Psf in the science image
593 candidateList : `list`, optional
594 A list of footprints/maskedImages for kernel candidates;
595 if `None` then source detection is run.
597 - Currently supported: list of Footprints or measAlg.PsfCandidateF
600 What to do if ``templateExposure``` and ``scienceExposure`` WCSs do
603 - if `True` then warp ``templateExposure`` to match ``scienceExposure``
604 - if `False` then raise an Exception
606 convolveTemplate : `bool`
607 Convolve the template image or the science image
609 - if `True`, ``templateExposure`` is warped if doWarping,
610 ``templateExposure`` is convolved
611 - if `False`, ``templateExposure`` is warped if doWarping,
612 ``scienceExposure is`` convolved
616 result : `lsst.pipe.base.Struct`
617 An `lsst.pipe.base.Struct` containing these fields:
619 - ``subtractedExposure`` : subtracted Exposure
620 scienceExposure - (matchedImage + backgroundModel)
621 - ``matchedImage`` : ``templateExposure`` after warping to match
622 ``templateExposure`` (if doWarping true),
623 and convolving with psfMatchingKernel
624 - ``psfMatchingKernel`` : PSF matching kernel
625 - ``backgroundModel`` : differential background model
626 - ``kernelCellSet`` : SpatialCellSet used to determine PSF matching kernel
629 templateExposure=templateExposure,
630 scienceExposure=scienceExposure,
631 templateFwhmPix=templateFwhmPix,
632 scienceFwhmPix=scienceFwhmPix,
633 candidateList=candidateList,
635 convolveTemplate=convolveTemplate
638 subtractedExposure = afwImage.ExposureF(scienceExposure,
True)
640 subtractedMaskedImage = subtractedExposure.getMaskedImage()
641 subtractedMaskedImage -= results.matchedExposure.getMaskedImage()
642 subtractedMaskedImage -= results.backgroundModel
644 subtractedExposure.setMaskedImage(results.warpedExposure.getMaskedImage())
645 subtractedMaskedImage = subtractedExposure.getMaskedImage()
646 subtractedMaskedImage -= results.matchedExposure.getMaskedImage()
647 subtractedMaskedImage -= results.backgroundModel
650 subtractedMaskedImage *= -1
653 subtractedMaskedImage /= results.psfMatchingKernel.computeImage(
654 afwImage.ImageD(results.psfMatchingKernel.getDimensions()),
False)
660 if not maskTransparency:
663 afwDisplay.setDefaultMaskTransparency(maskTransparency)
664 if display
and displayDiffIm:
665 disp = afwDisplay.Display(frame=lsstDebug.frame)
666 disp.mtv(templateExposure, title=
"Template")
668 disp = afwDisplay.Display(frame=lsstDebug.frame)
669 disp.mtv(results.matchedExposure, title=
"Matched template")
671 disp = afwDisplay.Display(frame=lsstDebug.frame)
672 disp.mtv(scienceExposure, title=
"Science Image")
674 disp = afwDisplay.Display(frame=lsstDebug.frame)
675 disp.mtv(subtractedExposure, title=
"Difference Image")
678 results.subtractedExposure = subtractedExposure
683 templateFwhmPix=None, scienceFwhmPix=None):
684 """Psf-match and subtract two MaskedImages.
686 Do the following, in order:
688 - PSF-match templateMaskedImage to scienceMaskedImage
689 - Determine the differential background
690 - Return the difference: scienceMaskedImage
691 ((warped templateMaskedImage convolved with psfMatchingKernel) + backgroundModel)
695 templateMaskedImage : `lsst.afw.image.MaskedImage`
696 MaskedImage to PSF-match to ``scienceMaskedImage``
697 scienceMaskedImage : `lsst.afw.image.MaskedImage`
698 Reference MaskedImage
699 templateFwhmPix : `float`
700 FWHM (in pixels) of the Psf in the template image (image to convolve)
701 scienceFwhmPix : `float`
702 FWHM (in pixels) of the Psf in the science image
703 candidateList : `list`, optional
704 A list of footprints/maskedImages for kernel candidates;
705 if `None` then source detection is run.
707 - Currently supported: list of Footprints or measAlg.PsfCandidateF
711 results : `lsst.pipe.base.Struct`
712 An `lsst.pipe.base.Struct` containing these fields:
714 - ``subtractedMaskedImage`` : ``scienceMaskedImage`` - (matchedImage + backgroundModel)
715 - ``matchedImage`` : templateMaskedImage convolved with psfMatchingKernel
716 - `psfMatchingKernel`` : PSF matching kernel
717 - ``backgroundModel`` : differential background model
718 - ``kernelCellSet`` : SpatialCellSet used to determine PSF matching kernel
721 if not candidateList:
722 raise RuntimeError(
"Candidate list must be populated by makeCandidateList")
725 templateMaskedImage=templateMaskedImage,
726 scienceMaskedImage=scienceMaskedImage,
727 candidateList=candidateList,
728 templateFwhmPix=templateFwhmPix,
729 scienceFwhmPix=scienceFwhmPix,
732 subtractedMaskedImage = afwImage.MaskedImageF(scienceMaskedImage,
True)
733 subtractedMaskedImage -= results.matchedImage
734 subtractedMaskedImage -= results.backgroundModel
735 results.subtractedMaskedImage = subtractedMaskedImage
741 if not maskTransparency:
744 afwDisplay.setDefaultMaskTransparency(maskTransparency)
745 if display
and displayDiffIm:
746 disp = afwDisplay.Display(frame=lsstDebug.frame)
747 disp.mtv(subtractedMaskedImage, title=
"Subtracted masked image")
753 """Get sources to use for Psf-matching.
755 This method runs detection and measurement on an exposure.
756 The returned set of sources will be used as candidates for
761 exposure : `lsst.afw.image.Exposure`
762 Exposure on which to run detection/measurement
766 Whether or not to smooth the Exposure with Psf before detection
768 Factory for the generation of Source ids
773 source catalog containing candidates for the Psf-matching
776 table = afwTable.SourceTable.make(self.
selectSchema, idFactory)
779 mi = exposure.getMaskedImage()
781 imArr = mi.getImage().getArray()
782 maskArr = mi.getMask().getArray()
783 miArr = np.ma.masked_array(imArr, mask=maskArr)
786 bkgd = fitBg.getImageF(self.
background.config.algorithm,
789 self.log.
warn(
"Failed to get background model. Falling back to median background estimation")
790 bkgd = np.ma.extras.median(miArr)
796 detRet = self.selectDetection.
run(
802 selectSources = detRet.sources
803 self.selectMeasurement.
run(measCat=selectSources, exposure=exposure)
811 """Make a list of acceptable KernelCandidates.
813 Accept or generate a list of candidate sources for
814 Psf-matching, and examine the Mask planes in both of the
815 images for indications of bad pixels
819 templateExposure : `lsst.afw.image.Exposure`
820 Exposure that will be convolved
821 scienceExposure : `lsst.afw.image.Exposure`
822 Exposure that will be matched-to
824 Dimensions of the Psf-matching Kernel, used to grow detection footprints
825 candidateList : `list`, optional
826 List of Sources to examine. Elements must be of type afw.table.Source
827 or a type that wraps a Source and has a getSource() method, such as
828 meas.algorithms.PsfCandidateF.
832 candidateList : `list` of `dict`
833 A list of dicts having a "source" and "footprint"
834 field for the Sources deemed to be appropriate for Psf
837 if candidateList
is None:
840 if len(candidateList) < 1:
841 raise RuntimeError(
"No candidates in candidateList")
843 listTypes =
set(
type(x)
for x
in candidateList)
844 if len(listTypes) > 1:
845 raise RuntimeError(
"Candidate list contains mixed types: %s" % [l
for l
in listTypes])
849 candidateList[0].getSource()
850 except Exception
as e:
851 raise RuntimeError(f
"Candidate List is of type: {type(candidateList[0])} "
852 "Can only make candidate list from list of afwTable.SourceRecords, "
853 f
"measAlg.PsfCandidateF or other type with a getSource() method: {e}")
854 candidateList = [c.getSource()
for c
in candidateList]
856 candidateList = diffimTools.sourceToFootprintList(candidateList,
857 templateExposure, scienceExposure,
861 if len(candidateList) == 0:
862 raise RuntimeError(
"Cannot find any objects suitable for KernelCandidacy")
866 def _adaptCellSize(self, candidateList):
867 """NOT IMPLEMENTED YET.
871 def _buildCellSet(self, templateMaskedImage, scienceMaskedImage, candidateList):
872 """Build a SpatialCellSet for use with the solve method.
876 templateMaskedImage : `lsst.afw.image.MaskedImage`
877 MaskedImage to PSF-matched to scienceMaskedImage
878 scienceMaskedImage : `lsst.afw.image.MaskedImage`
879 Reference MaskedImage
880 candidateList : `list`
881 A list of footprints/maskedImages for kernel candidates;
883 - Currently supported: list of Footprints or measAlg.PsfCandidateF
887 kernelCellSet : `lsst.afw.math.SpatialCellSet`
888 a SpatialCellSet for use with self._solve
890 if not candidateList:
891 raise RuntimeError(
"Candidate list must be populated by makeCandidateList")
897 sizeCellX, sizeCellY)
899 ps = pexConfig.makePropertySet(self.
kConfig)
901 for cand
in candidateList:
903 bbox = cand.getBBox()
905 bbox = cand[
'footprint'].getBBox()
906 tmi = afwImage.MaskedImageF(templateMaskedImage, bbox)
907 smi = afwImage.MaskedImageF(scienceMaskedImage, bbox)
911 cand = cand[
'source']
912 xPos = cand.getCentroid()[0]
913 yPos = cand.getCentroid()[1]
914 cand = diffimLib.makeKernelCandidate(xPos, yPos, tmi, smi, ps)
916 self.log.
debug(
"Candidate %d at %f, %f", cand.getId(), cand.getXCenter(), cand.getYCenter())
917 kernelCellSet.insertCandidate(cand)
921 def _validateSize(self, templateMaskedImage, scienceMaskedImage):
922 """Return True if two image-like objects are the same size.
924 return templateMaskedImage.getDimensions() == scienceMaskedImage.getDimensions()
926 def _validateWcs(self, templateExposure, scienceExposure):
927 """Return True if the WCS of the two Exposures have the same origin and extent.
929 templateWcs = templateExposure.getWcs()
930 scienceWcs = scienceExposure.getWcs()
931 templateBBox = templateExposure.getBBox()
932 scienceBBox = scienceExposure.getBBox()
935 templateOrigin = templateWcs.pixelToSky(
geom.Point2D(templateBBox.getBegin()))
936 scienceOrigin = scienceWcs.pixelToSky(
geom.Point2D(scienceBBox.getBegin()))
939 templateLimit = templateWcs.pixelToSky(
geom.Point2D(templateBBox.getEnd()))
940 scienceLimit = scienceWcs.pixelToSky(
geom.Point2D(scienceBBox.getEnd()))
942 self.log.
info(
"Template Wcs : %f,%f -> %f,%f",
943 templateOrigin[0], templateOrigin[1],
944 templateLimit[0], templateLimit[1])
945 self.log.
info(
"Science Wcs : %f,%f -> %f,%f",
946 scienceOrigin[0], scienceOrigin[1],
947 scienceLimit[0], scienceLimit[1])
949 templateBBox =
geom.Box2D(templateOrigin.getPosition(geom.degrees),
950 templateLimit.getPosition(geom.degrees))
951 scienceBBox =
geom.Box2D(scienceOrigin.getPosition(geom.degrees),
952 scienceLimit.getPosition(geom.degrees))
953 if not (templateBBox.overlaps(scienceBBox)):
954 raise RuntimeError(
"Input images do not overlap at all")
956 if ((templateOrigin != scienceOrigin)
957 or (templateLimit != scienceLimit)
958 or (templateExposure.getDimensions() != scienceExposure.getDimensions())):
963 subtractAlgorithmRegistry = pexConfig.makeRegistry(
964 doc=
"A registry of subtraction algorithms for use as a subtask in imageDifference",
967 subtractAlgorithmRegistry.register(
'al', ImagePsfMatchTask)