28 import lsst.pex.config
as pexConfig
32 from contextlib
import contextmanager
33 from lsstDebug
import getDebugFrame
44 from .
import isrFunctions
46 from .
import linearize
48 from .assembleCcdTask
import AssembleCcdTask
49 from .crosstalk
import CrosstalkTask
50 from .fringe
import FringeTask
51 from .isr
import maskNans
52 from .masking
import MaskingTask
53 from .overscan
import OverscanCorrectionTask
54 from .straylight
import StrayLightTask
55 from .vignette
import VignetteTask
58 __all__ = [
"IsrTask",
"IsrTaskConfig",
"RunIsrTask",
"RunIsrConfig"]
62 dimensions={
"instrument",
"exposure",
"detector"},
64 ccdExposure = cT.Input(
66 doc=
"Input exposure to process.",
67 storageClass=
"Exposure",
68 dimensions=[
"instrument",
"detector",
"exposure"],
70 camera = cT.PrerequisiteInput(
72 storageClass=
"Camera",
73 doc=
"Input camera to construct complete exposures.",
74 dimensions=[
"instrument",
"calibration_label"],
76 bias = cT.PrerequisiteInput(
78 doc=
"Input bias calibration.",
79 storageClass=
"ExposureF",
80 dimensions=[
"instrument",
"calibration_label",
"detector"],
82 dark = cT.PrerequisiteInput(
84 doc=
"Input dark calibration.",
85 storageClass=
"ExposureF",
86 dimensions=[
"instrument",
"calibration_label",
"detector"],
88 flat = cT.PrerequisiteInput(
90 doc=
"Input flat calibration.",
91 storageClass=
"ExposureF",
92 dimensions=[
"instrument",
"physical_filter",
"calibration_label",
"detector"],
94 fringes = cT.PrerequisiteInput(
96 doc=
"Input fringe calibration.",
97 storageClass=
"ExposureF",
98 dimensions=[
"instrument",
"physical_filter",
"calibration_label",
"detector"],
100 strayLightData = cT.PrerequisiteInput(
102 doc=
"Input stray light calibration.",
103 storageClass=
"StrayLightData",
104 dimensions=[
"instrument",
"physical_filter",
"calibration_label",
"detector"],
106 bfKernel = cT.PrerequisiteInput(
108 doc=
"Input brighter-fatter kernel.",
109 storageClass=
"NumpyArray",
110 dimensions=[
"instrument",
"calibration_label"],
112 newBFKernel = cT.PrerequisiteInput(
113 name=
'brighterFatterKernel',
114 doc=
"Newer complete kernel + gain solutions.",
115 storageClass=
"BrighterFatterKernel",
116 dimensions=[
"instrument",
"calibration_label",
"detector"],
118 defects = cT.PrerequisiteInput(
120 doc=
"Input defect tables.",
121 storageClass=
"Defects",
122 dimensions=[
"instrument",
"calibration_label",
"detector"],
124 opticsTransmission = cT.PrerequisiteInput(
125 name=
"transmission_optics",
126 storageClass=
"TransmissionCurve",
127 doc=
"Transmission curve due to the optics.",
128 dimensions=[
"instrument",
"calibration_label"],
130 filterTransmission = cT.PrerequisiteInput(
131 name=
"transmission_filter",
132 storageClass=
"TransmissionCurve",
133 doc=
"Transmission curve due to the filter.",
134 dimensions=[
"instrument",
"physical_filter",
"calibration_label"],
136 sensorTransmission = cT.PrerequisiteInput(
137 name=
"transmission_sensor",
138 storageClass=
"TransmissionCurve",
139 doc=
"Transmission curve due to the sensor.",
140 dimensions=[
"instrument",
"calibration_label",
"detector"],
142 atmosphereTransmission = cT.PrerequisiteInput(
143 name=
"transmission_atmosphere",
144 storageClass=
"TransmissionCurve",
145 doc=
"Transmission curve due to the atmosphere.",
146 dimensions=[
"instrument"],
148 illumMaskedImage = cT.PrerequisiteInput(
150 doc=
"Input illumination correction.",
151 storageClass=
"MaskedImageF",
152 dimensions=[
"instrument",
"physical_filter",
"calibration_label",
"detector"],
155 outputExposure = cT.Output(
157 doc=
"Output ISR processed exposure.",
158 storageClass=
"ExposureF",
159 dimensions=[
"instrument",
"exposure",
"detector"],
161 preInterpExposure = cT.Output(
162 name=
'preInterpISRCCD',
163 doc=
"Output ISR processed exposure, with pixels left uninterpolated.",
164 storageClass=
"ExposureF",
165 dimensions=[
"instrument",
"exposure",
"detector"],
167 outputOssThumbnail = cT.Output(
169 doc=
"Output Overscan-subtracted thumbnail image.",
170 storageClass=
"Thumbnail",
171 dimensions=[
"instrument",
"exposure",
"detector"],
173 outputFlattenedThumbnail = cT.Output(
174 name=
"FlattenedThumb",
175 doc=
"Output flat-corrected thumbnail image.",
176 storageClass=
"Thumbnail",
177 dimensions=[
"instrument",
"exposure",
"detector"],
183 if config.doBias
is not True:
184 self.prerequisiteInputs.discard(
"bias")
185 if config.doLinearize
is not True:
186 self.prerequisiteInputs.discard(
"linearizer")
187 if config.doCrosstalk
is not True:
188 self.prerequisiteInputs.discard(
"crosstalkSources")
189 if config.doBrighterFatter
is not True:
190 self.prerequisiteInputs.discard(
"bfKernel")
191 self.prerequisiteInputs.discard(
"newBFKernel")
192 if config.doDefect
is not True:
193 self.prerequisiteInputs.discard(
"defects")
194 if config.doDark
is not True:
195 self.prerequisiteInputs.discard(
"dark")
196 if config.doFlat
is not True:
197 self.prerequisiteInputs.discard(
"flat")
198 if config.doAttachTransmissionCurve
is not True:
199 self.prerequisiteInputs.discard(
"opticsTransmission")
200 self.prerequisiteInputs.discard(
"filterTransmission")
201 self.prerequisiteInputs.discard(
"sensorTransmission")
202 self.prerequisiteInputs.discard(
"atmosphereTransmission")
203 if config.doUseOpticsTransmission
is not True:
204 self.prerequisiteInputs.discard(
"opticsTransmission")
205 if config.doUseFilterTransmission
is not True:
206 self.prerequisiteInputs.discard(
"filterTransmission")
207 if config.doUseSensorTransmission
is not True:
208 self.prerequisiteInputs.discard(
"sensorTransmission")
209 if config.doUseAtmosphereTransmission
is not True:
210 self.prerequisiteInputs.discard(
"atmosphereTransmission")
211 if config.doIlluminationCorrection
is not True:
212 self.prerequisiteInputs.discard(
"illumMaskedImage")
214 if config.doWrite
is not True:
215 self.outputs.discard(
"outputExposure")
216 self.outputs.discard(
"preInterpExposure")
217 self.outputs.discard(
"outputFlattenedThumbnail")
218 self.outputs.discard(
"outputOssThumbnail")
219 if config.doSaveInterpPixels
is not True:
220 self.outputs.discard(
"preInterpExposure")
221 if config.qa.doThumbnailOss
is not True:
222 self.outputs.discard(
"outputOssThumbnail")
223 if config.qa.doThumbnailFlattened
is not True:
224 self.outputs.discard(
"outputFlattenedThumbnail")
228 pipelineConnections=IsrTaskConnections):
229 """Configuration parameters for IsrTask.
231 Items are grouped in the order in which they are executed by the task.
233 datasetType = pexConfig.Field(
235 doc=
"Dataset type for input data; users will typically leave this alone, "
236 "but camera-specific ISR tasks will override it",
240 fallbackFilterName = pexConfig.Field(
242 doc=
"Fallback default filter name for calibrations.",
245 useFallbackDate = pexConfig.Field(
247 doc=
"Pass observation date when using fallback filter.",
250 expectWcs = pexConfig.Field(
253 doc=
"Expect input science images to have a WCS (set False for e.g. spectrographs)."
255 fwhm = pexConfig.Field(
257 doc=
"FWHM of PSF in arcseconds.",
260 qa = pexConfig.ConfigField(
262 doc=
"QA related configuration options.",
266 doConvertIntToFloat = pexConfig.Field(
268 doc=
"Convert integer raw images to floating point values?",
273 doSaturation = pexConfig.Field(
275 doc=
"Mask saturated pixels? NB: this is totally independent of the"
276 " interpolation option - this is ONLY setting the bits in the mask."
277 " To have them interpolated make sure doSaturationInterpolation=True",
280 saturatedMaskName = pexConfig.Field(
282 doc=
"Name of mask plane to use in saturation detection and interpolation",
285 saturation = pexConfig.Field(
287 doc=
"The saturation level to use if no Detector is present in the Exposure (ignored if NaN)",
288 default=float(
"NaN"),
290 growSaturationFootprintSize = pexConfig.Field(
292 doc=
"Number of pixels by which to grow the saturation footprints",
297 doSuspect = pexConfig.Field(
299 doc=
"Mask suspect pixels?",
302 suspectMaskName = pexConfig.Field(
304 doc=
"Name of mask plane to use for suspect pixels",
307 numEdgeSuspect = pexConfig.Field(
309 doc=
"Number of edge pixels to be flagged as untrustworthy.",
314 doSetBadRegions = pexConfig.Field(
316 doc=
"Should we set the level of all BAD patches of the chip to the chip's average value?",
319 badStatistic = pexConfig.ChoiceField(
321 doc=
"How to estimate the average value for BAD regions.",
324 "MEANCLIP":
"Correct using the (clipped) mean of good data",
325 "MEDIAN":
"Correct using the median of the good data",
330 doOverscan = pexConfig.Field(
332 doc=
"Do overscan subtraction?",
335 overscan = pexConfig.ConfigurableField(
336 target=OverscanCorrectionTask,
337 doc=
"Overscan subtraction task for image segments.",
340 overscanFitType = pexConfig.ChoiceField(
342 doc=
"The method for fitting the overscan bias level.",
345 "POLY":
"Fit ordinary polynomial to the longest axis of the overscan region",
346 "CHEB":
"Fit Chebyshev polynomial to the longest axis of the overscan region",
347 "LEG":
"Fit Legendre polynomial to the longest axis of the overscan region",
348 "NATURAL_SPLINE":
"Fit natural spline to the longest axis of the overscan region",
349 "CUBIC_SPLINE":
"Fit cubic spline to the longest axis of the overscan region",
350 "AKIMA_SPLINE":
"Fit Akima spline to the longest axis of the overscan region",
351 "MEAN":
"Correct using the mean of the overscan region",
352 "MEANCLIP":
"Correct using a clipped mean of the overscan region",
353 "MEDIAN":
"Correct using the median of the overscan region",
354 "MEDIAN_PER_ROW":
"Correct using the median per row of the overscan region",
356 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface." +
357 " This option will no longer be used, and will be removed after v20.")
359 overscanOrder = pexConfig.Field(
361 doc=(
"Order of polynomial or to fit if overscan fit type is a polynomial, " +
362 "or number of spline knots if overscan fit type is a spline."),
364 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface." +
365 " This option will no longer be used, and will be removed after v20.")
367 overscanNumSigmaClip = pexConfig.Field(
369 doc=
"Rejection threshold (sigma) for collapsing overscan before fit",
371 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface." +
372 " This option will no longer be used, and will be removed after v20.")
374 overscanIsInt = pexConfig.Field(
376 doc=
"Treat overscan as an integer image for purposes of overscan.FitType=MEDIAN" +
377 " and overscan.FitType=MEDIAN_PER_ROW.",
379 deprecated=(
"Please configure overscan via the OverscanCorrectionConfig interface." +
380 " This option will no longer be used, and will be removed after v20.")
383 overscanNumLeadingColumnsToSkip = pexConfig.Field(
385 doc=
"Number of columns to skip in overscan, i.e. those closest to amplifier",
388 overscanNumTrailingColumnsToSkip = pexConfig.Field(
390 doc=
"Number of columns to skip in overscan, i.e. those farthest from amplifier",
393 overscanMaxDev = pexConfig.Field(
395 doc=
"Maximum deviation from the median for overscan",
396 default=1000.0, check=
lambda x: x > 0
398 overscanBiasJump = pexConfig.Field(
400 doc=
"Fit the overscan in a piecewise-fashion to correct for bias jumps?",
403 overscanBiasJumpKeyword = pexConfig.Field(
405 doc=
"Header keyword containing information about devices.",
406 default=
"NO_SUCH_KEY",
408 overscanBiasJumpDevices = pexConfig.ListField(
410 doc=
"List of devices that need piecewise overscan correction.",
413 overscanBiasJumpLocation = pexConfig.Field(
415 doc=
"Location of bias jump along y-axis.",
420 doAssembleCcd = pexConfig.Field(
423 doc=
"Assemble amp-level exposures into a ccd-level exposure?"
425 assembleCcd = pexConfig.ConfigurableField(
426 target=AssembleCcdTask,
427 doc=
"CCD assembly task",
431 doAssembleIsrExposures = pexConfig.Field(
434 doc=
"Assemble amp-level calibration exposures into ccd-level exposure?"
436 doTrimToMatchCalib = pexConfig.Field(
439 doc=
"Trim raw data to match calibration bounding boxes?"
443 doBias = pexConfig.Field(
445 doc=
"Apply bias frame correction?",
448 biasDataProductName = pexConfig.Field(
450 doc=
"Name of the bias data product",
455 doVariance = pexConfig.Field(
457 doc=
"Calculate variance?",
460 gain = pexConfig.Field(
462 doc=
"The gain to use if no Detector is present in the Exposure (ignored if NaN)",
463 default=float(
"NaN"),
465 readNoise = pexConfig.Field(
467 doc=
"The read noise to use if no Detector is present in the Exposure",
470 doEmpiricalReadNoise = pexConfig.Field(
473 doc=
"Calculate empirical read noise instead of value from AmpInfo data?"
477 doLinearize = pexConfig.Field(
479 doc=
"Correct for nonlinearity of the detector's response?",
484 doCrosstalk = pexConfig.Field(
486 doc=
"Apply intra-CCD crosstalk correction?",
489 doCrosstalkBeforeAssemble = pexConfig.Field(
491 doc=
"Apply crosstalk correction before CCD assembly, and before trimming?",
494 crosstalk = pexConfig.ConfigurableField(
495 target=CrosstalkTask,
496 doc=
"Intra-CCD crosstalk correction",
500 doDefect = pexConfig.Field(
502 doc=
"Apply correction for CCD defects, e.g. hot pixels?",
505 doNanMasking = pexConfig.Field(
507 doc=
"Mask NAN pixels?",
510 doWidenSaturationTrails = pexConfig.Field(
512 doc=
"Widen bleed trails based on their width?",
517 doBrighterFatter = pexConfig.Field(
520 doc=
"Apply the brighter fatter correction"
522 brighterFatterLevel = pexConfig.ChoiceField(
525 doc=
"The level at which to correct for brighter-fatter.",
527 "AMP":
"Every amplifier treated separately.",
528 "DETECTOR":
"One kernel per detector",
531 brighterFatterMaxIter = pexConfig.Field(
534 doc=
"Maximum number of iterations for the brighter fatter correction"
536 brighterFatterThreshold = pexConfig.Field(
539 doc=
"Threshold used to stop iterating the brighter fatter correction. It is the "
540 " absolute value of the difference between the current corrected image and the one"
541 " from the previous iteration summed over all the pixels."
543 brighterFatterApplyGain = pexConfig.Field(
546 doc=
"Should the gain be applied when applying the brighter fatter correction?"
548 brighterFatterMaskGrowSize = pexConfig.Field(
551 doc=
"Number of pixels to grow the masks listed in config.maskListToInterpolate "
552 " when brighter-fatter correction is applied."
556 doDark = pexConfig.Field(
558 doc=
"Apply dark frame correction?",
561 darkDataProductName = pexConfig.Field(
563 doc=
"Name of the dark data product",
568 doStrayLight = pexConfig.Field(
570 doc=
"Subtract stray light in the y-band (due to encoder LEDs)?",
573 strayLight = pexConfig.ConfigurableField(
574 target=StrayLightTask,
575 doc=
"y-band stray light correction"
579 doFlat = pexConfig.Field(
581 doc=
"Apply flat field correction?",
584 flatDataProductName = pexConfig.Field(
586 doc=
"Name of the flat data product",
589 flatScalingType = pexConfig.ChoiceField(
591 doc=
"The method for scaling the flat on the fly.",
594 "USER":
"Scale by flatUserScale",
595 "MEAN":
"Scale by the inverse of the mean",
596 "MEDIAN":
"Scale by the inverse of the median",
599 flatUserScale = pexConfig.Field(
601 doc=
"If flatScalingType is 'USER' then scale flat by this amount; ignored otherwise",
604 doTweakFlat = pexConfig.Field(
606 doc=
"Tweak flats to match observed amplifier ratios?",
611 doApplyGains = pexConfig.Field(
613 doc=
"Correct the amplifiers for their gains instead of applying flat correction",
616 normalizeGains = pexConfig.Field(
618 doc=
"Normalize all the amplifiers in each CCD to have the same median value.",
623 doFringe = pexConfig.Field(
625 doc=
"Apply fringe correction?",
628 fringe = pexConfig.ConfigurableField(
630 doc=
"Fringe subtraction task",
632 fringeAfterFlat = pexConfig.Field(
634 doc=
"Do fringe subtraction after flat-fielding?",
639 doMeasureBackground = pexConfig.Field(
641 doc=
"Measure the background level on the reduced image?",
646 doCameraSpecificMasking = pexConfig.Field(
648 doc=
"Mask camera-specific bad regions?",
651 masking = pexConfig.ConfigurableField(
658 doInterpolate = pexConfig.Field(
660 doc=
"Interpolate masked pixels?",
663 doSaturationInterpolation = pexConfig.Field(
665 doc=
"Perform interpolation over pixels masked as saturated?"
666 " NB: This is independent of doSaturation; if that is False this plane"
667 " will likely be blank, resulting in a no-op here.",
670 doNanInterpolation = pexConfig.Field(
672 doc=
"Perform interpolation over pixels masked as NaN?"
673 " NB: This is independent of doNanMasking; if that is False this plane"
674 " will likely be blank, resulting in a no-op here.",
677 doNanInterpAfterFlat = pexConfig.Field(
679 doc=(
"If True, ensure we interpolate NaNs after flat-fielding, even if we "
680 "also have to interpolate them before flat-fielding."),
683 maskListToInterpolate = pexConfig.ListField(
685 doc=
"List of mask planes that should be interpolated.",
686 default=[
'SAT',
'BAD',
'UNMASKEDNAN'],
688 doSaveInterpPixels = pexConfig.Field(
690 doc=
"Save a copy of the pre-interpolated pixel values?",
695 fluxMag0T1 = pexConfig.DictField(
698 doc=
"The approximate flux of a zero-magnitude object in a one-second exposure, per filter.",
699 default=dict((f, pow(10.0, 0.4*m))
for f, m
in ((
"Unknown", 28.0),
702 defaultFluxMag0T1 = pexConfig.Field(
704 doc=
"Default value for fluxMag0T1 (for an unrecognized filter).",
705 default=pow(10.0, 0.4*28.0)
709 doVignette = pexConfig.Field(
711 doc=
"Apply vignetting parameters?",
714 vignette = pexConfig.ConfigurableField(
716 doc=
"Vignetting task.",
720 doAttachTransmissionCurve = pexConfig.Field(
723 doc=
"Construct and attach a wavelength-dependent throughput curve for this CCD image?"
725 doUseOpticsTransmission = pexConfig.Field(
728 doc=
"Load and use transmission_optics (if doAttachTransmissionCurve is True)?"
730 doUseFilterTransmission = pexConfig.Field(
733 doc=
"Load and use transmission_filter (if doAttachTransmissionCurve is True)?"
735 doUseSensorTransmission = pexConfig.Field(
738 doc=
"Load and use transmission_sensor (if doAttachTransmissionCurve is True)?"
740 doUseAtmosphereTransmission = pexConfig.Field(
743 doc=
"Load and use transmission_atmosphere (if doAttachTransmissionCurve is True)?"
747 doIlluminationCorrection = pexConfig.Field(
750 doc=
"Perform illumination correction?"
752 illuminationCorrectionDataProductName = pexConfig.Field(
754 doc=
"Name of the illumination correction data product.",
757 illumScale = pexConfig.Field(
759 doc=
"Scale factor for the illumination correction.",
762 illumFilters = pexConfig.ListField(
765 doc=
"Only perform illumination correction for these filters."
769 doWrite = pexConfig.Field(
771 doc=
"Persist postISRCCD?",
778 raise ValueError(
"You may not specify both doFlat and doApplyGains")
780 self.config.maskListToInterpolate.append(
"SAT")
782 self.config.maskListToInterpolate.append(
"UNMASKEDNAN")
785 class IsrTask(pipeBase.PipelineTask, pipeBase.CmdLineTask):
786 """Apply common instrument signature correction algorithms to a raw frame.
788 The process for correcting imaging data is very similar from
789 camera to camera. This task provides a vanilla implementation of
790 doing these corrections, including the ability to turn certain
791 corrections off if they are not needed. The inputs to the primary
792 method, `run()`, are a raw exposure to be corrected and the
793 calibration data products. The raw input is a single chip sized
794 mosaic of all amps including overscans and other non-science
795 pixels. The method `runDataRef()` identifies and defines the
796 calibration data products, and is intended for use by a
797 `lsst.pipe.base.cmdLineTask.CmdLineTask` and takes as input only a
798 `daf.persistence.butlerSubset.ButlerDataRef`. This task may be
799 subclassed for different camera, although the most camera specific
800 methods have been split into subtasks that can be redirected
803 The __init__ method sets up the subtasks for ISR processing, using
804 the defaults from `lsst.ip.isr`.
809 Positional arguments passed to the Task constructor. None used at this time.
810 kwargs : `dict`, optional
811 Keyword arguments passed on to the Task constructor. None used at this time.
813 ConfigClass = IsrTaskConfig
818 self.makeSubtask(
"assembleCcd")
819 self.makeSubtask(
"crosstalk")
820 self.makeSubtask(
"strayLight")
821 self.makeSubtask(
"fringe")
822 self.makeSubtask(
"masking")
823 self.makeSubtask(
"overscan")
824 self.makeSubtask(
"vignette")
827 inputs = butlerQC.get(inputRefs)
830 inputs[
'detectorNum'] = inputRefs.ccdExposure.dataId[
'detector']
831 except Exception
as e:
832 raise ValueError(
"Failure to find valid detectorNum value for Dataset %s: %s." %
835 inputs[
'isGen3'] =
True
837 detector = inputs[
'ccdExposure'].getDetector()
840 if 'linearizer' in inputs
and isinstance(inputs[
'linearizer'], dict):
842 linearizer.fromYaml(inputs[
'linearizer'])
846 inputs[
'linearizer'] = linearizer
848 if self.config.doDefect
is True:
849 if "defects" in inputs
and inputs[
'defects']
is not None:
852 if not isinstance(inputs[
"defects"], Defects):
853 inputs[
"defects"] = Defects.fromTable(inputs[
"defects"])
857 if self.config.doBrighterFatter:
858 brighterFatterKernel = inputs.pop(
'newBFKernel',
None)
859 if brighterFatterKernel
is None:
860 brighterFatterKernel = inputs.get(
'bfKernel',
None)
862 if brighterFatterKernel
is not None and not isinstance(brighterFatterKernel, numpy.ndarray):
863 detId = detector.getId()
864 inputs[
'bfGains'] = brighterFatterKernel.gain
867 if self.config.brighterFatterLevel ==
'DETECTOR':
868 if brighterFatterKernel.detectorKernel:
869 inputs[
'bfKernel'] = brighterFatterKernel.detectorKernel[detId]
870 elif brighterFatterKernel.detectorKernelFromAmpKernels:
871 inputs[
'bfKernel'] = brighterFatterKernel.detectorKernelFromAmpKernels[detId]
873 raise RuntimeError(
"Failed to extract kernel from new-style BF kernel.")
876 raise NotImplementedError(
"Per-amplifier brighter-fatter correction not implemented")
884 if self.config.doFringe
is True and self.fringe.checkFilter(inputs[
'ccdExposure']):
885 expId = inputs[
'ccdExposure'].
getInfo().getVisitInfo().getExposureId()
886 inputs[
'fringes'] = self.fringe.loadFringes(inputs[
'fringes'],
888 assembler=self.assembleCcd
889 if self.config.doAssembleIsrExposures
else None)
891 inputs[
'fringes'] = pipeBase.Struct(fringes=
None)
893 if self.config.doStrayLight
is True and self.strayLight.checkFilter(inputs[
'ccdExposure']):
894 if 'strayLightData' not in inputs:
895 inputs[
'strayLightData'] =
None
897 outputs = self.
run(**inputs)
898 butlerQC.put(outputs, outputRefs)
901 """!Retrieve necessary frames for instrument signature removal.
903 Pre-fetching all required ISR data products limits the IO
904 required by the ISR. Any conflict between the calibration data
905 available and that needed for ISR is also detected prior to
906 doing processing, allowing it to fail quickly.
910 dataRef : `daf.persistence.butlerSubset.ButlerDataRef`
911 Butler reference of the detector data to be processed
912 rawExposure : `afw.image.Exposure`
913 The raw exposure that will later be corrected with the
914 retrieved calibration data; should not be modified in this
919 result : `lsst.pipe.base.Struct`
920 Result struct with components (which may be `None`):
921 - ``bias``: bias calibration frame (`afw.image.Exposure`)
922 - ``linearizer``: functor for linearization (`ip.isr.linearize.LinearizeBase`)
923 - ``crosstalkSources``: list of possible crosstalk sources (`list`)
924 - ``dark``: dark calibration frame (`afw.image.Exposure`)
925 - ``flat``: flat calibration frame (`afw.image.Exposure`)
926 - ``bfKernel``: Brighter-Fatter kernel (`numpy.ndarray`)
927 - ``defects``: list of defects (`lsst.meas.algorithms.Defects`)
928 - ``fringes``: `lsst.pipe.base.Struct` with components:
929 - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
930 - ``seed``: random seed derived from the ccdExposureId for random
931 number generator (`uint32`).
932 - ``opticsTransmission``: `lsst.afw.image.TransmissionCurve`
933 A ``TransmissionCurve`` that represents the throughput of the optics,
934 to be evaluated in focal-plane coordinates.
935 - ``filterTransmission`` : `lsst.afw.image.TransmissionCurve`
936 A ``TransmissionCurve`` that represents the throughput of the filter
937 itself, to be evaluated in focal-plane coordinates.
938 - ``sensorTransmission`` : `lsst.afw.image.TransmissionCurve`
939 A ``TransmissionCurve`` that represents the throughput of the sensor
940 itself, to be evaluated in post-assembly trimmed detector coordinates.
941 - ``atmosphereTransmission`` : `lsst.afw.image.TransmissionCurve`
942 A ``TransmissionCurve`` that represents the throughput of the
943 atmosphere, assumed to be spatially constant.
944 - ``strayLightData`` : `object`
945 An opaque object containing calibration information for
946 stray-light correction. If `None`, no correction will be
948 - ``illumMaskedImage`` : illumination correction image (`lsst.afw.image.MaskedImage`)
952 NotImplementedError :
953 Raised if a per-amplifier brighter-fatter kernel is requested by the configuration.
956 dateObs = rawExposure.getInfo().getVisitInfo().getDate()
957 dateObs = dateObs.toPython().isoformat()
959 self.log.
warn(
"Unable to identify dateObs for rawExposure.")
962 ccd = rawExposure.getDetector()
963 filterName =
afwImage.Filter(rawExposure.getFilter().getId()).getName()
964 rawExposure.mask.addMaskPlane(
"UNMASKEDNAN")
965 biasExposure = (self.
getIsrExposure(dataRef, self.config.biasDataProductName)
966 if self.config.doBias
else None)
968 linearizer = (dataRef.get(
"linearizer", immediate=
True)
970 if linearizer
is not None and not isinstance(linearizer, numpy.ndarray):
971 linearizer.log = self.log
972 if isinstance(linearizer, numpy.ndarray):
974 crosstalkSources = (self.crosstalk.prepCrosstalk(dataRef)
975 if self.config.doCrosstalk
else None)
976 darkExposure = (self.
getIsrExposure(dataRef, self.config.darkDataProductName)
977 if self.config.doDark
else None)
978 flatExposure = (self.
getIsrExposure(dataRef, self.config.flatDataProductName,
980 if self.config.doFlat
else None)
982 brighterFatterKernel =
None
983 brighterFatterGains =
None
984 if self.config.doBrighterFatter
is True:
989 brighterFatterKernel = dataRef.get(
"brighterFatterKernel")
990 brighterFatterGains = brighterFatterKernel.gain
991 self.log.
info(
"New style bright-fatter kernel (brighterFatterKernel) loaded")
994 brighterFatterKernel = dataRef.get(
"bfKernel")
995 self.log.
info(
"Old style bright-fatter kernel (np.array) loaded")
997 brighterFatterKernel =
None
998 if brighterFatterKernel
is not None and not isinstance(brighterFatterKernel, numpy.ndarray):
1001 if self.config.brighterFatterLevel ==
'DETECTOR':
1002 if brighterFatterKernel.detectorKernel:
1003 brighterFatterKernel = brighterFatterKernel.detectorKernel[ccd.getId()]
1004 elif brighterFatterKernel.detectorKernelFromAmpKernels:
1005 brighterFatterKernel = brighterFatterKernel.detectorKernelFromAmpKernels[ccd.getId()]
1007 raise RuntimeError(
"Failed to extract kernel from new-style BF kernel.")
1010 raise NotImplementedError(
"Per-amplifier brighter-fatter correction not implemented")
1012 defectList = (dataRef.get(
"defects")
1013 if self.config.doDefect
else None)
1014 fringeStruct = (self.fringe.readFringes(dataRef, assembler=self.assembleCcd
1015 if self.config.doAssembleIsrExposures
else None)
1016 if self.config.doFringe
and self.fringe.checkFilter(rawExposure)
1017 else pipeBase.Struct(fringes=
None))
1019 if self.config.doAttachTransmissionCurve:
1020 opticsTransmission = (dataRef.get(
"transmission_optics")
1021 if self.config.doUseOpticsTransmission
else None)
1022 filterTransmission = (dataRef.get(
"transmission_filter")
1023 if self.config.doUseFilterTransmission
else None)
1024 sensorTransmission = (dataRef.get(
"transmission_sensor")
1025 if self.config.doUseSensorTransmission
else None)
1026 atmosphereTransmission = (dataRef.get(
"transmission_atmosphere")
1027 if self.config.doUseAtmosphereTransmission
else None)
1029 opticsTransmission =
None
1030 filterTransmission =
None
1031 sensorTransmission =
None
1032 atmosphereTransmission =
None
1034 if self.config.doStrayLight:
1035 strayLightData = self.strayLight.
readIsrData(dataRef, rawExposure)
1037 strayLightData =
None
1040 self.config.illuminationCorrectionDataProductName).getMaskedImage()
1041 if (self.config.doIlluminationCorrection
and
1042 filterName
in self.config.illumFilters)
1046 return pipeBase.Struct(bias=biasExposure,
1047 linearizer=linearizer,
1048 crosstalkSources=crosstalkSources,
1051 bfKernel=brighterFatterKernel,
1052 bfGains=brighterFatterGains,
1054 fringes=fringeStruct,
1055 opticsTransmission=opticsTransmission,
1056 filterTransmission=filterTransmission,
1057 sensorTransmission=sensorTransmission,
1058 atmosphereTransmission=atmosphereTransmission,
1059 strayLightData=strayLightData,
1060 illumMaskedImage=illumMaskedImage
1063 @pipeBase.timeMethod
1064 def run(self, ccdExposure, camera=None, bias=None, linearizer=None, crosstalkSources=None,
1065 dark=None, flat=None, bfKernel=None, bfGains=None, defects=None,
1066 fringes=pipeBase.Struct(fringes=
None), opticsTransmission=
None, filterTransmission=
None,
1067 sensorTransmission=
None, atmosphereTransmission=
None,
1068 detectorNum=
None, strayLightData=
None, illumMaskedImage=
None,
1071 """!Perform instrument signature removal on an exposure.
1073 Steps included in the ISR processing, in order performed, are:
1074 - saturation and suspect pixel masking
1075 - overscan subtraction
1076 - CCD assembly of individual amplifiers
1078 - variance image construction
1079 - linearization of non-linear response
1081 - brighter-fatter correction
1084 - stray light subtraction
1086 - masking of known defects and camera specific features
1087 - vignette calculation
1088 - appending transmission curve and distortion model
1092 ccdExposure : `lsst.afw.image.Exposure`
1093 The raw exposure that is to be run through ISR. The
1094 exposure is modified by this method.
1095 camera : `lsst.afw.cameraGeom.Camera`, optional
1096 The camera geometry for this exposure. Required if ``isGen3`` is
1097 `True` and one or more of ``ccdExposure``, ``bias``, ``dark``, or
1098 ``flat`` does not have an associated detector.
1099 bias : `lsst.afw.image.Exposure`, optional
1100 Bias calibration frame.
1101 linearizer : `lsst.ip.isr.linearize.LinearizeBase`, optional
1102 Functor for linearization.
1103 crosstalkSources : `list`, optional
1104 List of possible crosstalk sources.
1105 dark : `lsst.afw.image.Exposure`, optional
1106 Dark calibration frame.
1107 flat : `lsst.afw.image.Exposure`, optional
1108 Flat calibration frame.
1109 bfKernel : `numpy.ndarray`, optional
1110 Brighter-fatter kernel.
1111 bfGains : `dict` of `float`, optional
1112 Gains used to override the detector's nominal gains for the
1113 brighter-fatter correction. A dict keyed by amplifier name for
1114 the detector in question.
1115 defects : `lsst.meas.algorithms.Defects`, optional
1117 fringes : `lsst.pipe.base.Struct`, optional
1118 Struct containing the fringe correction data, with
1120 - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
1121 - ``seed``: random seed derived from the ccdExposureId for random
1122 number generator (`uint32`)
1123 opticsTransmission: `lsst.afw.image.TransmissionCurve`, optional
1124 A ``TransmissionCurve`` that represents the throughput of the optics,
1125 to be evaluated in focal-plane coordinates.
1126 filterTransmission : `lsst.afw.image.TransmissionCurve`
1127 A ``TransmissionCurve`` that represents the throughput of the filter
1128 itself, to be evaluated in focal-plane coordinates.
1129 sensorTransmission : `lsst.afw.image.TransmissionCurve`
1130 A ``TransmissionCurve`` that represents the throughput of the sensor
1131 itself, to be evaluated in post-assembly trimmed detector coordinates.
1132 atmosphereTransmission : `lsst.afw.image.TransmissionCurve`
1133 A ``TransmissionCurve`` that represents the throughput of the
1134 atmosphere, assumed to be spatially constant.
1135 detectorNum : `int`, optional
1136 The integer number for the detector to process.
1137 isGen3 : bool, optional
1138 Flag this call to run() as using the Gen3 butler environment.
1139 strayLightData : `object`, optional
1140 Opaque object containing calibration information for stray-light
1141 correction. If `None`, no correction will be performed.
1142 illumMaskedImage : `lsst.afw.image.MaskedImage`, optional
1143 Illumination correction image.
1147 result : `lsst.pipe.base.Struct`
1148 Result struct with component:
1149 - ``exposure`` : `afw.image.Exposure`
1150 The fully ISR corrected exposure.
1151 - ``outputExposure`` : `afw.image.Exposure`
1152 An alias for `exposure`
1153 - ``ossThumb`` : `numpy.ndarray`
1154 Thumbnail image of the exposure after overscan subtraction.
1155 - ``flattenedThumb`` : `numpy.ndarray`
1156 Thumbnail image of the exposure after flat-field correction.
1161 Raised if a configuration option is set to True, but the
1162 required calibration data has not been specified.
1166 The current processed exposure can be viewed by setting the
1167 appropriate lsstDebug entries in the `debug.display`
1168 dictionary. The names of these entries correspond to some of
1169 the IsrTaskConfig Boolean options, with the value denoting the
1170 frame to use. The exposure is shown inside the matching
1171 option check and after the processing of that step has
1172 finished. The steps with debug points are:
1183 In addition, setting the "postISRCCD" entry displays the
1184 exposure after all ISR processing has finished.
1192 if detectorNum
is None:
1193 raise RuntimeError(
"Must supply the detectorNum if running as Gen3.")
1195 ccdExposure = self.
ensureExposure(ccdExposure, camera, detectorNum)
1200 if isinstance(ccdExposure, ButlerDataRef):
1203 ccd = ccdExposure.getDetector()
1204 filterName =
afwImage.Filter(ccdExposure.getFilter().getId()).getName()
1207 assert not self.config.doAssembleCcd,
"You need a Detector to run assembleCcd."
1208 ccd = [
FakeAmp(ccdExposure, self.config)]
1211 if self.config.doBias
and bias
is None:
1212 raise RuntimeError(
"Must supply a bias exposure if config.doBias=True.")
1214 raise RuntimeError(
"Must supply a linearizer if config.doLinearize=True for this detector.")
1215 if self.config.doBrighterFatter
and bfKernel
is None:
1216 raise RuntimeError(
"Must supply a kernel if config.doBrighterFatter=True.")
1217 if self.config.doDark
and dark
is None:
1218 raise RuntimeError(
"Must supply a dark exposure if config.doDark=True.")
1219 if self.config.doFlat
and flat
is None:
1220 raise RuntimeError(
"Must supply a flat exposure if config.doFlat=True.")
1221 if self.config.doDefect
and defects
is None:
1222 raise RuntimeError(
"Must supply defects if config.doDefect=True.")
1223 if (self.config.doFringe
and filterName
in self.fringe.config.filters
and
1224 fringes.fringes
is None):
1229 raise RuntimeError(
"Must supply fringe exposure as a pipeBase.Struct.")
1230 if (self.config.doIlluminationCorrection
and filterName
in self.config.illumFilters
and
1231 illumMaskedImage
is None):
1232 raise RuntimeError(
"Must supply an illumcor if config.doIlluminationCorrection=True.")
1235 if self.config.doConvertIntToFloat:
1236 self.log.
info(
"Converting exposure to floating point values.")
1243 if ccdExposure.getBBox().
contains(amp.getBBox()):
1247 if self.config.doOverscan
and not badAmp:
1250 self.log.
debug(
"Corrected overscan for amplifier %s.", amp.getName())
1251 if overscanResults
is not None and \
1252 self.config.qa
is not None and self.config.qa.saveStats
is True:
1253 if isinstance(overscanResults.overscanFit, float):
1254 qaMedian = overscanResults.overscanFit
1255 qaStdev = float(
"NaN")
1258 afwMath.MEDIAN | afwMath.STDEVCLIP)
1259 qaMedian = qaStats.getValue(afwMath.MEDIAN)
1260 qaStdev = qaStats.getValue(afwMath.STDEVCLIP)
1262 self.metadata.
set(f
"ISR OSCAN {amp.getName()} MEDIAN", qaMedian)
1263 self.metadata.
set(f
"ISR OSCAN {amp.getName()} STDEV", qaStdev)
1264 self.log.
debug(
" Overscan stats for amplifer %s: %f +/- %f",
1265 amp.getName(), qaMedian, qaStdev)
1266 ccdExposure.getMetadata().
set(
'OVERSCAN',
"Overscan corrected")
1269 self.log.
warn(
"Amplifier %s is bad.", amp.getName())
1270 overscanResults =
None
1272 overscans.append(overscanResults
if overscanResults
is not None else None)
1274 self.log.
info(
"Skipped OSCAN for %s.", amp.getName())
1276 if self.config.doCrosstalk
and self.config.doCrosstalkBeforeAssemble:
1277 self.log.
info(
"Applying crosstalk correction.")
1278 self.crosstalk.
run(ccdExposure, crosstalkSources=crosstalkSources)
1279 self.
debugView(ccdExposure,
"doCrosstalk")
1281 if self.config.doAssembleCcd:
1282 self.log.
info(
"Assembling CCD from amplifiers.")
1283 ccdExposure = self.assembleCcd.assembleCcd(ccdExposure)
1285 if self.config.expectWcs
and not ccdExposure.getWcs():
1286 self.log.
warn(
"No WCS found in input exposure.")
1287 self.
debugView(ccdExposure,
"doAssembleCcd")
1290 if self.config.qa.doThumbnailOss:
1291 ossThumb = isrQa.makeThumbnail(ccdExposure, isrQaConfig=self.config.qa)
1293 if self.config.doBias:
1294 self.log.
info(
"Applying bias correction.")
1295 isrFunctions.biasCorrection(ccdExposure.getMaskedImage(), bias.getMaskedImage(),
1296 trimToFit=self.config.doTrimToMatchCalib)
1299 if self.config.doVariance:
1300 for amp, overscanResults
in zip(ccd, overscans):
1301 if ccdExposure.getBBox().
contains(amp.getBBox()):
1302 self.log.
debug(
"Constructing variance map for amplifer %s.", amp.getName())
1303 ampExposure = ccdExposure.Factory(ccdExposure, amp.getBBox())
1304 if overscanResults
is not None:
1306 overscanImage=overscanResults.overscanImage)
1310 if self.config.qa
is not None and self.config.qa.saveStats
is True:
1312 afwMath.MEDIAN | afwMath.STDEVCLIP)
1313 self.metadata.
set(f
"ISR VARIANCE {amp.getName()} MEDIAN",
1314 qaStats.getValue(afwMath.MEDIAN))
1315 self.metadata.
set(f
"ISR VARIANCE {amp.getName()} STDEV",
1316 qaStats.getValue(afwMath.STDEVCLIP))
1317 self.log.
debug(
" Variance stats for amplifer %s: %f +/- %f.",
1318 amp.getName(), qaStats.getValue(afwMath.MEDIAN),
1319 qaStats.getValue(afwMath.STDEVCLIP))
1322 self.log.
info(
"Applying linearizer.")
1323 linearizer.applyLinearity(image=ccdExposure.getMaskedImage().getImage(),
1324 detector=ccd, log=self.log)
1326 if self.config.doCrosstalk
and not self.config.doCrosstalkBeforeAssemble:
1327 self.log.
info(
"Applying crosstalk correction.")
1328 self.crosstalk.
run(ccdExposure, crosstalkSources=crosstalkSources, isTrimmed=
True)
1329 self.
debugView(ccdExposure,
"doCrosstalk")
1333 if self.config.doDefect:
1334 self.log.
info(
"Masking defects.")
1337 if self.config.numEdgeSuspect > 0:
1338 self.log.
info(
"Masking edges as SUSPECT.")
1339 self.
maskEdges(ccdExposure, numEdgePixels=self.config.numEdgeSuspect,
1340 maskPlane=
"SUSPECT")
1342 if self.config.doNanMasking:
1343 self.log.
info(
"Masking NAN value pixels.")
1346 if self.config.doWidenSaturationTrails:
1347 self.log.
info(
"Widening saturation trails.")
1348 isrFunctions.widenSaturationTrails(ccdExposure.getMaskedImage().getMask())
1350 if self.config.doCameraSpecificMasking:
1351 self.log.
info(
"Masking regions for camera specific reasons.")
1352 self.masking.
run(ccdExposure)
1354 if self.config.doBrighterFatter:
1363 interpExp = ccdExposure.clone()
1365 isrFunctions.interpolateFromMask(
1366 maskedImage=interpExp.getMaskedImage(),
1367 fwhm=self.config.fwhm,
1368 growSaturatedFootprints=self.config.growSaturationFootprintSize,
1369 maskNameList=self.config.maskListToInterpolate
1371 bfExp = interpExp.clone()
1373 self.log.
info(
"Applying brighter fatter correction using kernel type %s / gains %s.",
1375 bfResults = isrFunctions.brighterFatterCorrection(bfExp, bfKernel,
1376 self.config.brighterFatterMaxIter,
1377 self.config.brighterFatterThreshold,
1378 self.config.brighterFatterApplyGain,
1380 if bfResults[1] == self.config.brighterFatterMaxIter:
1381 self.log.
warn(
"Brighter fatter correction did not converge, final difference %f.",
1384 self.log.
info(
"Finished brighter fatter correction in %d iterations.",
1386 image = ccdExposure.getMaskedImage().getImage()
1387 bfCorr = bfExp.getMaskedImage().getImage()
1388 bfCorr -= interpExp.getMaskedImage().getImage()
1397 self.log.
info(
"Ensuring image edges are masked as SUSPECT to the brighter-fatter kernel size.")
1398 self.
maskEdges(ccdExposure, numEdgePixels=numpy.max(bfKernel.shape) // 2,
1401 if self.config.brighterFatterMaskGrowSize > 0:
1402 self.log.
info(
"Growing masks to account for brighter-fatter kernel convolution.")
1403 for maskPlane
in self.config.maskListToInterpolate:
1404 isrFunctions.growMasks(ccdExposure.getMask(),
1405 radius=self.config.brighterFatterMaskGrowSize,
1406 maskNameList=maskPlane,
1407 maskValue=maskPlane)
1409 self.
debugView(ccdExposure,
"doBrighterFatter")
1411 if self.config.doDark:
1412 self.log.
info(
"Applying dark correction.")
1416 if self.config.doFringe
and not self.config.fringeAfterFlat:
1417 self.log.
info(
"Applying fringe correction before flat.")
1418 self.fringe.
run(ccdExposure, **fringes.getDict())
1421 if self.config.doStrayLight
and self.strayLight.check(ccdExposure):
1422 self.log.
info(
"Checking strayLight correction.")
1423 self.strayLight.
run(ccdExposure, strayLightData)
1424 self.
debugView(ccdExposure,
"doStrayLight")
1426 if self.config.doFlat:
1427 self.log.
info(
"Applying flat correction.")
1431 if self.config.doApplyGains:
1432 self.log.
info(
"Applying gain correction instead of flat.")
1433 isrFunctions.applyGains(ccdExposure, self.config.normalizeGains)
1435 if self.config.doFringe
and self.config.fringeAfterFlat:
1436 self.log.
info(
"Applying fringe correction after flat.")
1437 self.fringe.
run(ccdExposure, **fringes.getDict())
1439 if self.config.doVignette:
1440 self.log.
info(
"Constructing Vignette polygon.")
1443 if self.config.vignette.doWriteVignettePolygon:
1446 if self.config.doAttachTransmissionCurve:
1447 self.log.
info(
"Adding transmission curves.")
1448 isrFunctions.attachTransmissionCurve(ccdExposure, opticsTransmission=opticsTransmission,
1449 filterTransmission=filterTransmission,
1450 sensorTransmission=sensorTransmission,
1451 atmosphereTransmission=atmosphereTransmission)
1453 flattenedThumb =
None
1454 if self.config.qa.doThumbnailFlattened:
1455 flattenedThumb = isrQa.makeThumbnail(ccdExposure, isrQaConfig=self.config.qa)
1457 if self.config.doIlluminationCorrection
and filterName
in self.config.illumFilters:
1458 self.log.
info(
"Performing illumination correction.")
1459 isrFunctions.illuminationCorrection(ccdExposure.getMaskedImage(),
1460 illumMaskedImage, illumScale=self.config.illumScale,
1461 trimToFit=self.config.doTrimToMatchCalib)
1464 if self.config.doSaveInterpPixels:
1465 preInterpExp = ccdExposure.clone()
1480 if self.config.doSetBadRegions:
1481 badPixelCount, badPixelValue = isrFunctions.setBadRegions(ccdExposure)
1482 if badPixelCount > 0:
1483 self.log.
info(
"Set %d BAD pixels to %f.", badPixelCount, badPixelValue)
1485 if self.config.doInterpolate:
1486 self.log.
info(
"Interpolating masked pixels.")
1487 isrFunctions.interpolateFromMask(
1488 maskedImage=ccdExposure.getMaskedImage(),
1489 fwhm=self.config.fwhm,
1490 growSaturatedFootprints=self.config.growSaturationFootprintSize,
1491 maskNameList=
list(self.config.maskListToInterpolate)
1496 if self.config.doMeasureBackground:
1497 self.log.
info(
"Measuring background level.")
1500 if self.config.qa
is not None and self.config.qa.saveStats
is True:
1502 ampExposure = ccdExposure.Factory(ccdExposure, amp.getBBox())
1504 afwMath.MEDIAN | afwMath.STDEVCLIP)
1505 self.metadata.
set(
"ISR BACKGROUND {} MEDIAN".
format(amp.getName()),
1506 qaStats.getValue(afwMath.MEDIAN))
1507 self.metadata.
set(
"ISR BACKGROUND {} STDEV".
format(amp.getName()),
1508 qaStats.getValue(afwMath.STDEVCLIP))
1509 self.log.
debug(
" Background stats for amplifer %s: %f +/- %f",
1510 amp.getName(), qaStats.getValue(afwMath.MEDIAN),
1511 qaStats.getValue(afwMath.STDEVCLIP))
1513 self.
debugView(ccdExposure,
"postISRCCD")
1515 return pipeBase.Struct(
1516 exposure=ccdExposure,
1518 flattenedThumb=flattenedThumb,
1520 preInterpolatedExposure=preInterpExp,
1521 outputExposure=ccdExposure,
1522 outputOssThumbnail=ossThumb,
1523 outputFlattenedThumbnail=flattenedThumb,
1526 @pipeBase.timeMethod
1528 """Perform instrument signature removal on a ButlerDataRef of a Sensor.
1530 This method contains the `CmdLineTask` interface to the ISR
1531 processing. All IO is handled here, freeing the `run()` method
1532 to manage only pixel-level calculations. The steps performed
1534 - Read in necessary detrending/isr/calibration data.
1535 - Process raw exposure in `run()`.
1536 - Persist the ISR-corrected exposure as "postISRCCD" if
1537 config.doWrite=True.
1541 sensorRef : `daf.persistence.butlerSubset.ButlerDataRef`
1542 DataRef of the detector data to be processed
1546 result : `lsst.pipe.base.Struct`
1547 Result struct with component:
1548 - ``exposure`` : `afw.image.Exposure`
1549 The fully ISR corrected exposure.
1554 Raised if a configuration option is set to True, but the
1555 required calibration data does not exist.
1558 self.log.
info(
"Performing ISR on sensor %s.", sensorRef.dataId)
1560 ccdExposure = sensorRef.get(self.config.datasetType)
1562 camera = sensorRef.get(
"camera")
1563 isrData = self.
readIsrData(sensorRef, ccdExposure)
1565 result = self.
run(ccdExposure, camera=camera, **isrData.getDict())
1567 if self.config.doWrite:
1568 sensorRef.put(result.exposure,
"postISRCCD")
1569 if result.preInterpolatedExposure
is not None:
1570 sensorRef.put(result.preInterpolatedExposure,
"postISRCCD_uninterpolated")
1571 if result.ossThumb
is not None:
1572 isrQa.writeThumbnail(sensorRef, result.ossThumb,
"ossThumb")
1573 if result.flattenedThumb
is not None:
1574 isrQa.writeThumbnail(sensorRef, result.flattenedThumb,
"flattenedThumb")
1579 """!Retrieve a calibration dataset for removing instrument signature.
1584 dataRef : `daf.persistence.butlerSubset.ButlerDataRef`
1585 DataRef of the detector data to find calibration datasets
1588 Type of dataset to retrieve (e.g. 'bias', 'flat', etc).
1589 dateObs : `str`, optional
1590 Date of the observation. Used to correct butler failures
1591 when using fallback filters.
1593 If True, disable butler proxies to enable error handling
1594 within this routine.
1598 exposure : `lsst.afw.image.Exposure`
1599 Requested calibration frame.
1604 Raised if no matching calibration frame can be found.
1607 exp = dataRef.get(datasetType, immediate=immediate)
1608 except Exception
as exc1:
1609 if not self.config.fallbackFilterName:
1610 raise RuntimeError(
"Unable to retrieve %s for %s: %s." % (datasetType, dataRef.dataId, exc1))
1612 if self.config.useFallbackDate
and dateObs:
1613 exp = dataRef.get(datasetType, filter=self.config.fallbackFilterName,
1614 dateObs=dateObs, immediate=immediate)
1616 exp = dataRef.get(datasetType, filter=self.config.fallbackFilterName, immediate=immediate)
1617 except Exception
as exc2:
1618 raise RuntimeError(
"Unable to retrieve %s for %s, even with fallback filter %s: %s AND %s." %
1619 (datasetType, dataRef.dataId, self.config.fallbackFilterName, exc1, exc2))
1620 self.log.
warn(
"Using fallback calibration from filter %s.", self.config.fallbackFilterName)
1622 if self.config.doAssembleIsrExposures:
1623 exp = self.assembleCcd.assembleCcd(exp)
1627 """Ensure that the data returned by Butler is a fully constructed exposure.
1629 ISR requires exposure-level image data for historical reasons, so if we did
1630 not recieve that from Butler, construct it from what we have, modifying the
1635 inputExp : `lsst.afw.image.Exposure`, `lsst.afw.image.DecoratedImageU`, or
1636 `lsst.afw.image.ImageF`
1637 The input data structure obtained from Butler.
1638 camera : `lsst.afw.cameraGeom.camera`
1639 The camera associated with the image. Used to find the appropriate
1642 The detector this exposure should match.
1646 inputExp : `lsst.afw.image.Exposure`
1647 The re-constructed exposure, with appropriate detector parameters.
1652 Raised if the input data cannot be used to construct an exposure.
1654 if isinstance(inputExp, afwImage.DecoratedImageU):
1656 elif isinstance(inputExp, afwImage.ImageF):
1658 elif isinstance(inputExp, afwImage.MaskedImageF):
1662 elif inputExp
is None:
1666 raise TypeError(
"Input Exposure is not known type in isrTask.ensureExposure: %s." %
1669 if inputExp.getDetector()
is None:
1670 inputExp.setDetector(camera[detectorNum])
1675 """Convert exposure image from uint16 to float.
1677 If the exposure does not need to be converted, the input is
1678 immediately returned. For exposures that are converted to use
1679 floating point pixels, the variance is set to unity and the
1684 exposure : `lsst.afw.image.Exposure`
1685 The raw exposure to be converted.
1689 newexposure : `lsst.afw.image.Exposure`
1690 The input ``exposure``, converted to floating point pixels.
1695 Raised if the exposure type cannot be converted to float.
1698 if isinstance(exposure, afwImage.ExposureF):
1700 self.log.
debug(
"Exposure already of type float.")
1702 if not hasattr(exposure,
"convertF"):
1703 raise RuntimeError(
"Unable to convert exposure (%s) to float." %
type(exposure))
1705 newexposure = exposure.convertF()
1706 newexposure.variance[:] = 1
1707 newexposure.mask[:] = 0x0
1712 """Identify bad amplifiers, saturated and suspect pixels.
1716 ccdExposure : `lsst.afw.image.Exposure`
1717 Input exposure to be masked.
1718 amp : `lsst.afw.table.AmpInfoCatalog`
1719 Catalog of parameters defining the amplifier on this
1721 defects : `lsst.meas.algorithms.Defects`
1722 List of defects. Used to determine if the entire
1728 If this is true, the entire amplifier area is covered by
1729 defects and unusable.
1732 maskedImage = ccdExposure.getMaskedImage()
1738 if defects
is not None:
1739 badAmp = bool(sum([v.getBBox().
contains(amp.getBBox())
for v
in defects]))
1744 dataView = afwImage.MaskedImageF(maskedImage, amp.getRawBBox(),
1746 maskView = dataView.getMask()
1747 maskView |= maskView.getPlaneBitMask(
"BAD")
1754 if self.config.doSaturation
and not badAmp:
1755 limits.update({self.config.saturatedMaskName: amp.getSaturation()})
1756 if self.config.doSuspect
and not badAmp:
1757 limits.update({self.config.suspectMaskName: amp.getSuspectLevel()})
1758 if math.isfinite(self.config.saturation):
1759 limits.update({self.config.saturatedMaskName: self.config.saturation})
1761 for maskName, maskThreshold
in limits.items():
1762 if not math.isnan(maskThreshold):
1763 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
1764 isrFunctions.makeThresholdMask(
1765 maskedImage=dataView,
1766 threshold=maskThreshold,
1772 maskView =
afwImage.Mask(maskedImage.getMask(), amp.getRawDataBBox(),
1774 maskVal = maskView.getPlaneBitMask([self.config.saturatedMaskName,
1775 self.config.suspectMaskName])
1776 if numpy.all(maskView.getArray() & maskVal > 0):
1778 maskView |= maskView.getPlaneBitMask(
"BAD")
1783 """Apply overscan correction in place.
1785 This method does initial pixel rejection of the overscan
1786 region. The overscan can also be optionally segmented to
1787 allow for discontinuous overscan responses to be fit
1788 separately. The actual overscan subtraction is performed by
1789 the `lsst.ip.isr.isrFunctions.overscanCorrection` function,
1790 which is called here after the amplifier is preprocessed.
1794 ccdExposure : `lsst.afw.image.Exposure`
1795 Exposure to have overscan correction performed.
1796 amp : `lsst.afw.table.AmpInfoCatalog`
1797 The amplifier to consider while correcting the overscan.
1801 overscanResults : `lsst.pipe.base.Struct`
1802 Result struct with components:
1803 - ``imageFit`` : scalar or `lsst.afw.image.Image`
1804 Value or fit subtracted from the amplifier image data.
1805 - ``overscanFit`` : scalar or `lsst.afw.image.Image`
1806 Value or fit subtracted from the overscan image data.
1807 - ``overscanImage`` : `lsst.afw.image.Image`
1808 Image of the overscan region with the overscan
1809 correction applied. This quantity is used to estimate
1810 the amplifier read noise empirically.
1815 Raised if the ``amp`` does not contain raw pixel information.
1819 lsst.ip.isr.isrFunctions.overscanCorrection
1821 if amp.getRawHorizontalOverscanBBox().isEmpty():
1822 self.log.
info(
"ISR_OSCAN: No overscan region. Not performing overscan correction.")
1826 statControl.setAndMask(ccdExposure.mask.getPlaneBitMask(
"SAT"))
1829 dataBBox = amp.getRawDataBBox()
1830 oscanBBox = amp.getRawHorizontalOverscanBBox()
1834 prescanBBox = amp.getRawPrescanBBox()
1835 if (oscanBBox.getBeginX() > prescanBBox.getBeginX()):
1836 dx0 += self.config.overscanNumLeadingColumnsToSkip
1837 dx1 -= self.config.overscanNumTrailingColumnsToSkip
1839 dx0 += self.config.overscanNumTrailingColumnsToSkip
1840 dx1 -= self.config.overscanNumLeadingColumnsToSkip
1846 if ((self.config.overscanBiasJump
and
1847 self.config.overscanBiasJumpLocation)
and
1848 (ccdExposure.getMetadata().exists(self.config.overscanBiasJumpKeyword)
and
1849 ccdExposure.getMetadata().getScalar(self.config.overscanBiasJumpKeyword)
in
1850 self.config.overscanBiasJumpDevices)):
1851 if amp.getReadoutCorner()
in (ReadoutCorner.LL, ReadoutCorner.LR):
1852 yLower = self.config.overscanBiasJumpLocation
1853 yUpper = dataBBox.getHeight() - yLower
1855 yUpper = self.config.overscanBiasJumpLocation
1856 yLower = dataBBox.getHeight() - yUpper
1875 oscanBBox.getHeight())))
1878 for imageBBox, overscanBBox
in zip(imageBBoxes, overscanBBoxes):
1879 ampImage = ccdExposure.maskedImage[imageBBox]
1880 overscanImage = ccdExposure.maskedImage[overscanBBox]
1882 overscanArray = overscanImage.image.array
1883 median = numpy.ma.median(numpy.ma.masked_where(overscanImage.mask.array, overscanArray))
1884 bad = numpy.where(numpy.abs(overscanArray - median) > self.config.overscanMaxDev)
1885 overscanImage.mask.array[bad] = overscanImage.mask.getPlaneBitMask(
"SAT")
1888 statControl.setAndMask(ccdExposure.mask.getPlaneBitMask(
"SAT"))
1890 overscanResults = self.overscan.
run(ampImage.getImage(), overscanImage)
1893 levelStat = afwMath.MEDIAN
1894 sigmaStat = afwMath.STDEVCLIP
1897 self.config.qa.flatness.nIter)
1898 metadata = ccdExposure.getMetadata()
1899 ampNum = amp.getName()
1901 if isinstance(overscanResults.overscanFit, float):
1902 metadata.set(
"ISR_OSCAN_LEVEL%s" % ampNum, overscanResults.overscanFit)
1903 metadata.set(
"ISR_OSCAN_SIGMA%s" % ampNum, 0.0)
1906 metadata.set(
"ISR_OSCAN_LEVEL%s" % ampNum, stats.getValue(levelStat))
1907 metadata.set(
"ISR_OSCAN_SIGMA%s" % ampNum, stats.getValue(sigmaStat))
1909 return overscanResults
1912 """Set the variance plane using the amplifier gain and read noise
1914 The read noise is calculated from the ``overscanImage`` if the
1915 ``doEmpiricalReadNoise`` option is set in the configuration; otherwise
1916 the value from the amplifier data is used.
1920 ampExposure : `lsst.afw.image.Exposure`
1921 Exposure to process.
1922 amp : `lsst.afw.table.AmpInfoRecord` or `FakeAmp`
1923 Amplifier detector data.
1924 overscanImage : `lsst.afw.image.MaskedImage`, optional.
1925 Image of overscan, required only for empirical read noise.
1929 lsst.ip.isr.isrFunctions.updateVariance
1931 maskPlanes = [self.config.saturatedMaskName, self.config.suspectMaskName]
1932 gain = amp.getGain()
1934 if math.isnan(gain):
1936 self.log.
warn(
"Gain set to NAN! Updating to 1.0 to generate Poisson variance.")
1939 self.log.
warn(
"Gain for amp %s == %g <= 0; setting to %f.",
1940 amp.getName(), gain, patchedGain)
1943 if self.config.doEmpiricalReadNoise
and overscanImage
is None:
1944 self.log.
info(
"Overscan is none for EmpiricalReadNoise.")
1946 if self.config.doEmpiricalReadNoise
and overscanImage
is not None:
1948 stats.setAndMask(overscanImage.mask.getPlaneBitMask(maskPlanes))
1950 self.log.
info(
"Calculated empirical read noise for amp %s: %f.",
1951 amp.getName(), readNoise)
1953 readNoise = amp.getReadNoise()
1955 isrFunctions.updateVariance(
1956 maskedImage=ampExposure.getMaskedImage(),
1958 readNoise=readNoise,
1962 """!Apply dark correction in place.
1966 exposure : `lsst.afw.image.Exposure`
1967 Exposure to process.
1968 darkExposure : `lsst.afw.image.Exposure`
1969 Dark exposure of the same size as ``exposure``.
1970 invert : `Bool`, optional
1971 If True, re-add the dark to an already corrected image.
1976 Raised if either ``exposure`` or ``darkExposure`` do not
1977 have their dark time defined.
1981 lsst.ip.isr.isrFunctions.darkCorrection
1983 expScale = exposure.getInfo().getVisitInfo().getDarkTime()
1984 if math.isnan(expScale):
1985 raise RuntimeError(
"Exposure darktime is NAN.")
1986 if darkExposure.getInfo().getVisitInfo()
is not None \
1987 and not math.isnan(darkExposure.getInfo().getVisitInfo().getDarkTime()):
1988 darkScale = darkExposure.getInfo().getVisitInfo().getDarkTime()
1992 self.log.
warn(
"darkExposure.getInfo().getVisitInfo() does not exist. Using darkScale = 1.0.")
1995 isrFunctions.darkCorrection(
1996 maskedImage=exposure.getMaskedImage(),
1997 darkMaskedImage=darkExposure.getMaskedImage(),
1999 darkScale=darkScale,
2001 trimToFit=self.config.doTrimToMatchCalib
2005 """!Check if linearization is needed for the detector cameraGeom.
2007 Checks config.doLinearize and the linearity type of the first
2012 detector : `lsst.afw.cameraGeom.Detector`
2013 Detector to get linearity type from.
2017 doLinearize : `Bool`
2018 If True, linearization should be performed.
2020 return self.config.doLinearize
and \
2021 detector.getAmplifiers()[0].getLinearityType() != NullLinearityType
2024 """!Apply flat correction in place.
2028 exposure : `lsst.afw.image.Exposure`
2029 Exposure to process.
2030 flatExposure : `lsst.afw.image.Exposure`
2031 Flat exposure of the same size as ``exposure``.
2032 invert : `Bool`, optional
2033 If True, unflatten an already flattened image.
2037 lsst.ip.isr.isrFunctions.flatCorrection
2039 isrFunctions.flatCorrection(
2040 maskedImage=exposure.getMaskedImage(),
2041 flatMaskedImage=flatExposure.getMaskedImage(),
2042 scalingType=self.config.flatScalingType,
2043 userScale=self.config.flatUserScale,
2045 trimToFit=self.config.doTrimToMatchCalib
2049 """!Detect saturated pixels and mask them using mask plane config.saturatedMaskName, in place.
2053 exposure : `lsst.afw.image.Exposure`
2054 Exposure to process. Only the amplifier DataSec is processed.
2055 amp : `lsst.afw.table.AmpInfoCatalog`
2056 Amplifier detector data.
2060 lsst.ip.isr.isrFunctions.makeThresholdMask
2062 if not math.isnan(amp.getSaturation()):
2063 maskedImage = exposure.getMaskedImage()
2064 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2065 isrFunctions.makeThresholdMask(
2066 maskedImage=dataView,
2067 threshold=amp.getSaturation(),
2069 maskName=self.config.saturatedMaskName,
2073 """!Interpolate over saturated pixels, in place.
2075 This method should be called after `saturationDetection`, to
2076 ensure that the saturated pixels have been identified in the
2077 SAT mask. It should also be called after `assembleCcd`, since
2078 saturated regions may cross amplifier boundaries.
2082 exposure : `lsst.afw.image.Exposure`
2083 Exposure to process.
2087 lsst.ip.isr.isrTask.saturationDetection
2088 lsst.ip.isr.isrFunctions.interpolateFromMask
2090 isrFunctions.interpolateFromMask(
2091 maskedImage=exposure.getMaskedImage(),
2092 fwhm=self.config.fwhm,
2093 growSaturatedFootprints=self.config.growSaturationFootprintSize,
2094 maskNameList=
list(self.config.saturatedMaskName),
2098 """!Detect suspect pixels and mask them using mask plane config.suspectMaskName, in place.
2102 exposure : `lsst.afw.image.Exposure`
2103 Exposure to process. Only the amplifier DataSec is processed.
2104 amp : `lsst.afw.table.AmpInfoCatalog`
2105 Amplifier detector data.
2109 lsst.ip.isr.isrFunctions.makeThresholdMask
2113 Suspect pixels are pixels whose value is greater than amp.getSuspectLevel().
2114 This is intended to indicate pixels that may be affected by unknown systematics;
2115 for example if non-linearity corrections above a certain level are unstable
2116 then that would be a useful value for suspectLevel. A value of `nan` indicates
2117 that no such level exists and no pixels are to be masked as suspicious.
2119 suspectLevel = amp.getSuspectLevel()
2120 if math.isnan(suspectLevel):
2123 maskedImage = exposure.getMaskedImage()
2124 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2125 isrFunctions.makeThresholdMask(
2126 maskedImage=dataView,
2127 threshold=suspectLevel,
2129 maskName=self.config.suspectMaskName,
2133 """!Mask defects using mask plane "BAD", in place.
2137 exposure : `lsst.afw.image.Exposure`
2138 Exposure to process.
2139 defectBaseList : `lsst.meas.algorithms.Defects` or `list` of
2140 `lsst.afw.image.DefectBase`.
2141 List of defects to mask.
2145 Call this after CCD assembly, since defects may cross amplifier boundaries.
2147 maskedImage = exposure.getMaskedImage()
2148 if not isinstance(defectBaseList, Defects):
2150 defectList =
Defects(defectBaseList)
2152 defectList = defectBaseList
2153 defectList.maskPixels(maskedImage, maskName=
"BAD")
2155 def maskEdges(self, exposure, numEdgePixels=0, maskPlane="SUSPECT"):
2156 """!Mask edge pixels with applicable mask plane.
2160 exposure : `lsst.afw.image.Exposure`
2161 Exposure to process.
2162 numEdgePixels : `int`, optional
2163 Number of edge pixels to mask.
2164 maskPlane : `str`, optional
2165 Mask plane name to use.
2167 maskedImage = exposure.getMaskedImage()
2168 maskBitMask = maskedImage.getMask().getPlaneBitMask(maskPlane)
2170 if numEdgePixels > 0:
2171 goodBBox = maskedImage.getBBox()
2173 goodBBox.grow(-numEdgePixels)
2175 SourceDetectionTask.setEdgeBits(
2182 """Mask and interpolate defects using mask plane "BAD", in place.
2186 exposure : `lsst.afw.image.Exposure`
2187 Exposure to process.
2188 defectBaseList : `lsst.meas.algorithms.Defects` or `list` of
2189 `lsst.afw.image.DefectBase`.
2190 List of defects to mask and interpolate.
2194 lsst.ip.isr.isrTask.maskDefect()
2197 self.
maskEdges(exposure, numEdgePixels=self.config.numEdgeSuspect,
2198 maskPlane=
"SUSPECT")
2199 isrFunctions.interpolateFromMask(
2200 maskedImage=exposure.getMaskedImage(),
2201 fwhm=self.config.fwhm,
2202 growSaturatedFootprints=0,
2203 maskNameList=[
"BAD"],
2207 """Mask NaNs using mask plane "UNMASKEDNAN", in place.
2211 exposure : `lsst.afw.image.Exposure`
2212 Exposure to process.
2216 We mask over all NaNs, including those that are masked with
2217 other bits (because those may or may not be interpolated over
2218 later, and we want to remove all NaNs). Despite this
2219 behaviour, the "UNMASKEDNAN" mask plane is used to preserve
2220 the historical name.
2222 maskedImage = exposure.getMaskedImage()
2225 maskedImage.getMask().addMaskPlane(
"UNMASKEDNAN")
2226 maskVal = maskedImage.getMask().getPlaneBitMask(
"UNMASKEDNAN")
2227 numNans =
maskNans(maskedImage, maskVal)
2228 self.metadata.
set(
"NUMNANS", numNans)
2230 self.log.
warn(
"There were %d unmasked NaNs.", numNans)
2233 """"Mask and interpolate NaNs using mask plane "UNMASKEDNAN", in place.
2237 exposure : `lsst.afw.image.Exposure`
2238 Exposure to process.
2242 lsst.ip.isr.isrTask.maskNan()
2245 isrFunctions.interpolateFromMask(
2246 maskedImage=exposure.getMaskedImage(),
2247 fwhm=self.config.fwhm,
2248 growSaturatedFootprints=0,
2249 maskNameList=[
"UNMASKEDNAN"],
2253 """Measure the image background in subgrids, for quality control purposes.
2257 exposure : `lsst.afw.image.Exposure`
2258 Exposure to process.
2259 IsrQaConfig : `lsst.ip.isr.isrQa.IsrQaConfig`
2260 Configuration object containing parameters on which background
2261 statistics and subgrids to use.
2263 if IsrQaConfig
is not None:
2265 IsrQaConfig.flatness.nIter)
2266 maskVal = exposure.getMaskedImage().getMask().getPlaneBitMask([
"BAD",
"SAT",
"DETECTED"])
2267 statsControl.setAndMask(maskVal)
2268 maskedImage = exposure.getMaskedImage()
2270 skyLevel = stats.getValue(afwMath.MEDIAN)
2271 skySigma = stats.getValue(afwMath.STDEVCLIP)
2272 self.log.
info(
"Flattened sky level: %f +/- %f.", skyLevel, skySigma)
2273 metadata = exposure.getMetadata()
2274 metadata.set(
'SKYLEVEL', skyLevel)
2275 metadata.set(
'SKYSIGMA', skySigma)
2278 stat = afwMath.MEANCLIP
if IsrQaConfig.flatness.doClip
else afwMath.MEAN
2279 meshXHalf = int(IsrQaConfig.flatness.meshX/2.)
2280 meshYHalf = int(IsrQaConfig.flatness.meshY/2.)
2281 nX = int((exposure.getWidth() + meshXHalf) / IsrQaConfig.flatness.meshX)
2282 nY = int((exposure.getHeight() + meshYHalf) / IsrQaConfig.flatness.meshY)
2283 skyLevels = numpy.zeros((nX, nY))
2286 yc = meshYHalf + j * IsrQaConfig.flatness.meshY
2288 xc = meshXHalf + i * IsrQaConfig.flatness.meshX
2290 xLLC = xc - meshXHalf
2291 yLLC = yc - meshYHalf
2292 xURC = xc + meshXHalf - 1
2293 yURC = yc + meshYHalf - 1
2296 miMesh = maskedImage.Factory(exposure.getMaskedImage(), bbox, afwImage.LOCAL)
2300 good = numpy.where(numpy.isfinite(skyLevels))
2301 skyMedian = numpy.median(skyLevels[good])
2302 flatness = (skyLevels[good] - skyMedian) / skyMedian
2303 flatness_rms = numpy.std(flatness)
2304 flatness_pp = flatness.max() - flatness.min()
if len(flatness) > 0
else numpy.nan
2306 self.log.
info(
"Measuring sky levels in %dx%d grids: %f.", nX, nY, skyMedian)
2307 self.log.
info(
"Sky flatness in %dx%d grids - pp: %f rms: %f.",
2308 nX, nY, flatness_pp, flatness_rms)
2310 metadata.set(
'FLATNESS_PP', float(flatness_pp))
2311 metadata.set(
'FLATNESS_RMS', float(flatness_rms))
2312 metadata.set(
'FLATNESS_NGRIDS',
'%dx%d' % (nX, nY))
2313 metadata.set(
'FLATNESS_MESHX', IsrQaConfig.flatness.meshX)
2314 metadata.set(
'FLATNESS_MESHY', IsrQaConfig.flatness.meshY)
2317 """Set an approximate magnitude zero point for the exposure.
2321 exposure : `lsst.afw.image.Exposure`
2322 Exposure to process.
2325 if filterName
in self.config.fluxMag0T1:
2326 fluxMag0 = self.config.fluxMag0T1[filterName]
2328 self.log.
warn(
"No rough magnitude zero point set for filter %s.", filterName)
2329 fluxMag0 = self.config.defaultFluxMag0T1
2331 expTime = exposure.getInfo().getVisitInfo().getExposureTime()
2333 self.log.
warn(
"Non-positive exposure time; skipping rough zero point.")
2336 self.log.
info(
"Setting rough magnitude zero point: %f", 2.5*math.log10(fluxMag0*expTime))
2340 """!Set the valid polygon as the intersection of fpPolygon and the ccd corners.
2344 ccdExposure : `lsst.afw.image.Exposure`
2345 Exposure to process.
2346 fpPolygon : `lsst.afw.geom.Polygon`
2347 Polygon in focal plane coordinates.
2350 ccd = ccdExposure.getDetector()
2351 fpCorners = ccd.getCorners(FOCAL_PLANE)
2352 ccdPolygon =
Polygon(fpCorners)
2355 intersect = ccdPolygon.intersectionSingle(fpPolygon)
2358 ccdPoints = ccd.transform(intersect, FOCAL_PLANE, PIXELS)
2359 validPolygon =
Polygon(ccdPoints)
2360 ccdExposure.getInfo().setValidPolygon(validPolygon)
2364 """Context manager that applies and removes flats and darks,
2365 if the task is configured to apply them.
2369 exp : `lsst.afw.image.Exposure`
2370 Exposure to process.
2371 flat : `lsst.afw.image.Exposure`
2372 Flat exposure the same size as ``exp``.
2373 dark : `lsst.afw.image.Exposure`, optional
2374 Dark exposure the same size as ``exp``.
2378 exp : `lsst.afw.image.Exposure`
2379 The flat and dark corrected exposure.
2381 if self.config.doDark
and dark
is not None:
2383 if self.config.doFlat:
2388 if self.config.doFlat:
2390 if self.config.doDark
and dark
is not None:
2394 """Utility function to examine ISR exposure at different stages.
2398 exposure : `lsst.afw.image.Exposure`
2401 State of processing to view.
2406 display.scale(
'asinh',
'zscale')
2407 display.mtv(exposure)
2408 prompt =
"Press Enter to continue [c]... "
2410 ans = input(prompt).lower()
2411 if ans
in (
"",
"c",):
2416 """A Detector-like object that supports returning gain and saturation level
2418 This is used when the input exposure does not have a detector.
2422 exposure : `lsst.afw.image.Exposure`
2423 Exposure to generate a fake amplifier for.
2424 config : `lsst.ip.isr.isrTaskConfig`
2425 Configuration to apply to the fake amplifier.
2429 self.
_bbox = exposure.getBBox(afwImage.LOCAL)
2431 self.
_gain = config.gain
2458 isr = pexConfig.ConfigurableField(target=IsrTask, doc=
"Instrument signature removal")
2462 """Task to wrap the default IsrTask to allow it to be retargeted.
2464 The standard IsrTask can be called directly from a command line
2465 program, but doing so removes the ability of the task to be
2466 retargeted. As most cameras override some set of the IsrTask
2467 methods, this would remove those data-specific methods in the
2468 output post-ISR images. This wrapping class fixes the issue,
2469 allowing identical post-ISR images to be generated by both the
2470 processCcd and isrTask code.
2472 ConfigClass = RunIsrConfig
2473 _DefaultName =
"runIsr"
2477 self.makeSubtask(
"isr")
2483 dataRef : `lsst.daf.persistence.ButlerDataRef`
2484 data reference of the detector data to be processed
2488 result : `pipeBase.Struct`
2489 Result struct with component:
2491 - exposure : `lsst.afw.image.Exposure`
2492 Post-ISR processed exposure.