23 from astropy
import units
24 from astropy.units
import cds
28 from lsst.afw.coord.weather
import Weather
30 __all__ = [
"refraction",
"differentialRefraction"]
34 deltaRefractScale = 1.0E8
37 def refraction(wavelength, elevation, observatory, weather=None):
38 """Calculate overall refraction under atmospheric and observing conditions.
43 wavelength is in nm (valid for 230.2 < wavelength < 2058.6)
44 elevation : `lsst.geom.Angle`
45 Elevation of the observation, as an Angle.
46 observatory : `lsst.afw.coord.Observatory`
47 Class containing the longitude, latitude,
48 and altitude of the observatory.
49 weather : `lsst.afw.coord.Weather`, optional
50 Class containing the measured temperature, pressure, and humidity
51 at the observatory during an observation
52 If omitted, typical conditions for the observatory's elevation will be calculated.
56 refraction : `lsst.geom.Angle`
57 The angular refraction for light of the given wavelength,
58 under the given observing conditions.
62 The calculation is taken from [1]_.
66 .. [1] R. C. Stone, "An Accurate Method for Computing Atmospheric
67 Refraction," Publications of the Astronomical Society of the Pacific,
68 vol. 108, p. 1051, 1996.
70 if wavelength < 230.2:
71 raise ValueError(
"Refraction calculation is valid for wavelengths between 230.2 and 2058.6 nm.")
72 if wavelength > 2058.6:
73 raise ValueError(
"Refraction calculation is valid for wavelengths between 230.2 and 2058.6 nm.")
74 latitude = observatory.getLatitude()
75 altitude = observatory.getElevation()
78 reducedN =
deltaN(wavelength, weather)/deltaRefractScale
80 atmosScaleheightRatio = 4.5908E-6*temperature.to_value(units.Kelvin)
84 relativeGravity = (1. + 0.005302*np.sin(latitude.asRadians())**2.
85 - 0.00000583*np.sin(2.*latitude.asRadians())**2. - 0.000000315*altitude)
88 tanZ = np.tan(np.pi/2. - elevation.asRadians())
89 atmosTerm1 = reducedN*relativeGravity*(1. - atmosScaleheightRatio)
90 atmosTerm2 = reducedN*relativeGravity*(atmosScaleheightRatio - reducedN/2.)
91 result = float(atmosTerm1*tanZ + atmosTerm2*tanZ**3.)*lsst.geom.radians
96 """Calculate the differential refraction between two wavelengths.
101 wavelength is in nm (valid for 230.2 < wavelength < 2058.6)
102 wavelengthRef : `float`
103 Reference wavelength, typically the effective wavelength of a filter.
104 elevation : `lsst.geom.Angle`
105 Elevation of the observation, as an Angle.
106 observatory : `lsst.afw.coord.Observatory`
107 Class containing the longitude, latitude,
108 and altitude of the observatory.
109 weather : `lsst.afw.coord.Weather`, optional
110 Class containing the measured temperature, pressure, and humidity
111 at the observatory during an observation
112 If omitted, typical conditions for the observatory's elevation will be calculated.
116 differentialRefraction : `lsst.geom.Angle`
117 The refraction at `wavelength` minus the refraction at `wavelengthRef`.
119 refractionStart =
refraction(wavelength, elevation, observatory, weather=weather)
120 refractionEnd =
refraction(wavelengthRef, elevation, observatory, weather=weather)
121 return refractionStart - refractionEnd
125 """Calculate the differential refractive index of air.
130 wavelength is in nanometers
131 weather : `lsst.afw.coord.Weather`
132 Class containing the measured temperature, pressure, and humidity
133 at the observatory during an observation
138 The difference of the refractive index of air from 1.,
139 calculated as (n_air - 1)*10^8
143 The differential refractive index is the difference of
144 the refractive index from 1., multiplied by 1E8 to simplify
145 the notation and equations. Calculated as (n_air - 1)*10^8
147 This replicates equation 14 of [1]_
151 .. [1] R. C. Stone, "An Accurate Method for Computing Atmospheric
152 Refraction," Publications of the Astronomical Society of the Pacific,
153 vol. 108, p. 1051, 1996.
155 waveNum = 1E3/wavelength
156 dryAirTerm = 2371.34 + (683939.7/(130. - waveNum**2.)) + (4547.3/(38.9 - waveNum**2.))
157 wetAirTerm = 6487.31 + 58.058*waveNum**2. - 0.71150*waveNum**4. + 0.08851*waveNum**6.
162 """Calculate dry air pressure term to refractive index calculation.
166 weather : `lsst.afw.coord.Weather`
167 Class containing the measured temperature, pressure, and humidity
168 at the observatory during an observation
172 densityFactor : `float`
173 Returns the relative density of dry air
174 at the given pressure and temperature.
178 This replicates equation 15 of [1]_
182 .. [1] R. C. Stone, "An Accurate Method for Computing Atmospheric
183 Refraction," Publications of the Astronomical Society of the Pacific,
184 vol. 108, p. 1051, 1996.
188 airPressure = weather.getAirPressure()*units.pascal
189 dryPressure = airPressure - waterVaporPressure
190 eqn = dryPressure.to_value(cds.mbar)*(57.90E-8 - 9.3250E-4/temperature.to_value(units.Kelvin)
191 + 0.25844/temperature.to_value(units.Kelvin)**2.)
192 densityFactor = (1. + eqn)*dryPressure.to_value(cds.mbar)/temperature.to_value(units.Kelvin)
197 """Calculate water vapor pressure term to refractive index calculation.
201 weather : `lsst.afw.coord.Weather`
202 Class containing the measured temperature, pressure, and humidity
203 at the observatory during an observation
207 densityFactor : `float`
208 Returns the relative density of water vapor
209 at the given pressure and temperature.
213 This replicates equation 16 of [1]_
217 .. [1] R. C. Stone, "An Accurate Method for Computing Atmospheric
218 Refraction," Publications of the Astronomical Society of the Pacific,
219 vol. 108, p. 1051, 1996.
223 densityEqn1 = (-2.37321E-3 + 2.23366/temperature.to_value(units.Kelvin)
224 - 710.792/temperature.to_value(units.Kelvin)**2.
225 + 7.75141E-4/temperature.to_value(units.Kelvin)**3.)
226 densityEqn2 = waterVaporPressure.to_value(cds.mbar)*(1. + 3.7E-4*waterVaporPressure.to_value(cds.mbar))
227 relativeDensity = waterVaporPressure.to_value(cds.mbar)/temperature.to_value(units.Kelvin)
228 densityFactor = (1 + densityEqn2*densityEqn1)*relativeDensity
234 """Convert humidity and temperature to water vapor pressure.
238 weather : `lsst.afw.coord.Weather`
239 Class containing the measured temperature, pressure, and humidity
240 at the observatory during an observation
244 pressure : `astropy.units.Quantity`
245 The water vapor pressure in Pascals
246 calculated from the given humidity and temperature.
250 This replicates equations 18 & 20 of [1]_
254 .. [1] R. C. Stone, "An Accurate Method for Computing Atmospheric
255 Refraction," Publications of the Astronomical Society of the Pacific,
256 vol. 108, p. 1051, 1996.
258 humidity = weather.getHumidity()
259 x = np.log(humidity/100.0)
261 temperatureEqn1 = (temperature + 238.3*units.Celsius)*x + 17.2694*temperature
262 temperatureEqn2 = (temperature + 238.3*units.Celsius)*(17.2694 - x) - 17.2694*temperature
263 dewPoint = 238.3*temperatureEqn1/temperatureEqn2
264 waterVaporPressure = (4.50874 + 0.341724*dewPoint + 0.0106778*dewPoint**2 + 0.184889E-3*dewPoint**3
265 + 0.238294E-5*dewPoint**4 + 0.203447E-7*dewPoint**5)*133.32239*units.pascal
267 return waterVaporPressure
271 """Thin wrapper to return the measured temperature from an observation.
275 weather : `lsst.afw.coord.Weather`
276 Class containing the measured temperature, pressure, and humidity
277 at the observatory during an observation
278 useKelvin : bool, optional
279 Set to True to return the temperature in Kelvin instead of Celsius
280 This is needed because Astropy can't easily convert
281 between Kelvin and Celsius.
285 temperature : `astropy.units.Quantity`
286 The temperature in Celsius, unless `useKelvin` is set.
288 temperature = weather.getAirTemperature()*units.Celsius
290 temperature = temperature.to(units.Kelvin, equivalencies=units.temperature())
295 """Set default local weather conditions if they are missing.
299 weather : `lsst.afw.coord.Weather`
300 Class containing the measured temperature, pressure, and humidity
301 at the observatory during an observation
302 altitude : `astropy.units.Quantity`
303 The altitude of the observatory, in meters.
307 default : `lsst.afw.coord.Weather`
308 Updated Weather class with any `nan` values replaced by defaults.
310 if isinstance(altitude, units.quantity.Quantity):
313 altitude2 = altitude*units.meter
314 p0 = 101325.*units.pascal
315 g = 9.80665*units.meter/units.second**2
316 R0 = 8.31447*units.Joule/(units.mol*units.Kelvin)
317 T0 = 19.*units.Celsius
318 lapseRate = -6.5*units.Celsius/units.km
319 M = 0.0289644*units.kg/units.mol
321 temperature = T0 + lapseRate*altitude2
322 temperatureK = temperature.to(units.Kelvin, equivalencies=units.temperature())
323 pressure = p0*np.exp(-(g*M*altitude2)/(R0*temperatureK))
325 weather = Weather((temperature/units.Celsius).value, (pressure/units.pascal).value, humidity)