LSSTApplications  19.0.0-14-gb0260a2+72efe9b372,20.0.0+7927753e06,20.0.0+8829bf0056,20.0.0+995114c5d2,20.0.0+b6f4b2abd1,20.0.0+bddc4f4cbe,20.0.0-1-g253301a+8829bf0056,20.0.0-1-g2b7511a+0d71a2d77f,20.0.0-1-g5b95a8c+7461dd0434,20.0.0-12-g321c96ea+23efe4bbff,20.0.0-16-gfab17e72e+fdf35455f6,20.0.0-2-g0070d88+ba3ffc8f0b,20.0.0-2-g4dae9ad+ee58a624b3,20.0.0-2-g61b8584+5d3db074ba,20.0.0-2-gb780d76+d529cf1a41,20.0.0-2-ged6426c+226a441f5f,20.0.0-2-gf072044+8829bf0056,20.0.0-2-gf1f7952+ee58a624b3,20.0.0-20-geae50cf+e37fec0aee,20.0.0-25-g3dcad98+544a109665,20.0.0-25-g5eafb0f+ee58a624b3,20.0.0-27-g64178ef+f1f297b00a,20.0.0-3-g4cc78c6+e0676b0dc8,20.0.0-3-g8f21e14+4fd2c12c9a,20.0.0-3-gbd60e8c+187b78b4b8,20.0.0-3-gbecbe05+48431fa087,20.0.0-38-ge4adf513+a12e1f8e37,20.0.0-4-g97dc21a+544a109665,20.0.0-4-gb4befbc+087873070b,20.0.0-4-gf910f65+5d3db074ba,20.0.0-5-gdfe0fee+199202a608,20.0.0-5-gfbfe500+d529cf1a41,20.0.0-6-g64f541c+d529cf1a41,20.0.0-6-g9a5b7a1+a1cd37312e,20.0.0-68-ga3f3dda+5fca18c6a4,20.0.0-9-g4aef684+e18322736b,w.2020.45
LSSTDataManagementBasePackage
MixturePrior.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_MixturePrior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_MixturePrior_h_INCLUDED
26 
29 
30 namespace lsst { namespace meas { namespace modelfit {
31 
35 class MixturePrior : public Prior {
36 public:
37 
38  explicit MixturePrior(PTR(Mixture const) mixture, std::string const & tag="");
39 
42  ndarray::Array<Scalar const,1,1> const & nonlinear,
43  ndarray::Array<Scalar const,1,1> const & amplitudes
44  ) const override;
45 
48  ndarray::Array<Scalar const,1,1> const & nonlinear,
49  ndarray::Array<Scalar const,1,1> const & amplitudes,
50  ndarray::Array<Scalar,1,1> const & nonlinearGradient,
51  ndarray::Array<Scalar,1,1> const & amplitudeGradient,
52  ndarray::Array<Scalar,2,1> const & nonlinearHessian,
53  ndarray::Array<Scalar,2,1> const & amplitudeHessian,
54  ndarray::Array<Scalar,2,1> const & crossHessian
55  ) const override;
56 
59  Vector const & gradient, Matrix const & hessian,
60  ndarray::Array<Scalar const,1,1> const & nonlinear
61  ) const override;
62 
65  Vector const & gradient, Matrix const & hessian,
66  ndarray::Array<Scalar const,1,1> const & nonlinear,
67  ndarray::Array<Scalar,1,1> const & amplitudes
68  ) const override;
69 
72  Vector const & gradient, Matrix const & fisher,
73  ndarray::Array<Scalar const,1,1> const & nonlinear,
74  afw::math::Random & rng,
75  ndarray::Array<Scalar,2,1> const & amplitudes,
76  ndarray::Array<Scalar,1,1> const & weights,
77  bool multiplyWeights=false
78  ) const override;
79 
87 
88  PTR(Mixture const) getMixture() const { return _mixture; }
89 
90 private:
91  PTR(Mixture const) _mixture;
92 };
93 
94 }}} // namespace lsst::meas::modelfit
95 
96 #endif // !LSST_MEAS_MODELFIT_MixturePrior_h_INCLUDED
Prior.h
std::string
STL class.
lsst::meas::modelfit::Prior
Base class for Bayesian priors.
Definition: Prior.h:36
lsst::meas::modelfit::Scalar
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
lsst::meas::modelfit::MixtureUpdateRestriction
Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM...
Definition: Mixture.h:111
lsst::meas::modelfit::MixturePrior::getUpdateRestriction
static MixtureUpdateRestriction const & getUpdateRestriction()
Return a MixtureUpdateRestriction appropriate for (e1,e2,r) data.
PTR
#define PTR(...)
Definition: base.h:41
lsst::meas::modelfit::MixturePrior::getMixture
boost::shared_ptr< Mixture const > getMixture() const
Definition: MixturePrior.h:88
lsst::meas::modelfit::MixturePrior
A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters.
Definition: MixturePrior.h:35
lsst::meas::modelfit::MixturePrior::maximize
Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const override
Compute the amplitude vector that maximizes the prior x likelihood product.
lsst::meas::modelfit::MixturePrior::marginalize
Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const override
Return the -log amplitude integral of the prior*likelihood product.
lsst::meas::modelfit::MixturePrior::MixturePrior
MixturePrior(boost::shared_ptr< Mixture const > mixture, std::string const &tag="")
lsst::meas::modelfit::Mixture
Definition: Mixture.h:128
lsst::meas::modelfit::Vector
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
lsst::meas::modelfit::MixturePrior::evaluateDerivatives
void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const override
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Mixture.h
lsst
A base class for image defects.
Definition: imageAlgorithm.dox:1
lsst::meas::modelfit::Matrix
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition: common.h:45
amplitudes
table::Key< table::Array< double > > amplitudes
Definition: LinearCombinationKernel.cc:300
lsst::afw::math::Random
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57
lsst::meas::modelfit::MixturePrior::evaluate
Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const override
Evaluate the prior at the given point in nonlinear and amplitude space.
lsst::meas::modelfit::MixturePrior::drawAmplitudes
void drawAmplitudes(Vector const &gradient, Matrix const &fisher, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const override
Draw a set of Monte Carlo amplitude vectors.