LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Public Member Functions | Static Public Member Functions | Protected Types | Protected Member Functions | Static Protected Member Functions | Related Symbols | List of all members
lsst::afw::image::PhotoCalib Class Referencefinal

The photometric calibration of an exposure. More...

#include <PhotoCalib.h>

Inheritance diagram for lsst::afw::image::PhotoCalib:
lsst::afw::table::io::PersistableFacade< PhotoCalib > lsst::afw::typehandling::Storable lsst::afw::table::io::Persistable

Public Member Functions

 PhotoCalib (PhotoCalib const &)=default
 
 PhotoCalib (PhotoCalib &&)=default
 
PhotoCaliboperator= (PhotoCalib const &)=delete
 
PhotoCaliboperator= (PhotoCalib &&)=delete
 
 ~PhotoCalib () override=default
 
 PhotoCalib ()
 Create a empty, zeroed calibration.
 
 PhotoCalib (double calibrationMean, double calibrationErr=0, lsst::geom::Box2I const &bbox=lsst::geom::Box2I())
 Create a non-spatially-varying calibration.
 
 PhotoCalib (std::shared_ptr< afw::math::BoundedField > calibration, double calibrationErr=0)
 Create a spatially-varying calibration.
 
 PhotoCalib (double calibrationMean, double calibrationErr, std::shared_ptr< afw::math::BoundedField > calibration, bool isConstant)
 Create a calibration with a pre-computed mean.
 
double instFluxToNanojansky (double instFlux, lsst::geom::Point< double, 2 > const &point) const
 Convert instFlux in ADU to nJy at a point in the BoundedField.
 
double instFluxToNanojansky (double instFlux) const
 
Measurement instFluxToNanojansky (double instFlux, double instFluxErr, lsst::geom::Point< double, 2 > const &point) const
 Convert instFlux and error in instFlux (ADU) to nJy and nJy error.
 
Measurement instFluxToNanojansky (double instFlux, double instFluxErr) const
 
Measurement instFluxToNanojansky (const afw::table::SourceRecord &sourceRecord, std::string const &instFluxField) const
 Convert sourceRecord[instFluxField_instFlux] (ADU) at location (sourceRecord.get("x"), sourceRecord.get("y")) (pixels) to flux and flux error (in nJy).
 
ndarray::Array< double, 2, 2 > instFluxToNanojansky (afw::table::SourceCatalog const &sourceCatalog, std::string const &instFluxField) const
 Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to nJy.
 
void instFluxToNanojansky (afw::table::SourceCatalog &sourceCatalog, std::string const &instFluxField, std::string const &outField) const
 Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to nJy and write the results back to sourceCatalog[outField_mag].
 
double instFluxToMagnitude (double instFlux, lsst::geom::Point< double, 2 > const &point) const
 Convert instFlux in ADU to AB magnitude.
 
double instFluxToMagnitude (double instFlux) const
 
Measurement instFluxToMagnitude (double instFlux, double instFluxErr, lsst::geom::Point< double, 2 > const &point) const
 Convert instFlux and error in instFlux (ADU) to AB magnitude and magnitude error.
 
Measurement instFluxToMagnitude (double instFlux, double instFluxErr) const
 
Measurement instFluxToMagnitude (afw::table::SourceRecord const &sourceRecord, std::string const &instFluxField) const
 Convert sourceRecord[instFluxField_instFlux] (ADU) at location (sourceRecord.get("x"), sourceRecord.get("y")) (pixels) to AB magnitude.
 
ndarray::Array< double, 2, 2 > instFluxToMagnitude (afw::table::SourceCatalog const &sourceCatalog, std::string const &instFluxField) const
 Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to AB magnitudes.
 
void instFluxToMagnitude (afw::table::SourceCatalog &sourceCatalog, std::string const &instFluxField, std::string const &outField) const
 Convert instFluxes in a catalog to AB magnitudes and write back into the catalog.
 
MaskedImage< float > calibrateImage (MaskedImage< float > const &maskedImage, bool includeScaleUncertainty=true) const
 Return a flux calibrated image, with pixel values in nJy.
 
MaskedImage< float > uncalibrateImage (MaskedImage< float > const &maskedImage, bool includeScaleUncertainty=true) const
 Return a un-calibrated image, with pixel values in ADU (or whatever the original input to this photoCalib was).
 
afw::table::SourceCatalog calibrateCatalog (afw::table::SourceCatalog const &catalog, std::vector< std::string > const &instFluxFields) const
 Return a flux calibrated catalog, with new _flux, _fluxErr, _mag, and _magErr fields.
 
afw::table::SourceCatalog calibrateCatalog (afw::table::SourceCatalog const &catalog) const
 
double magnitudeToInstFlux (double magnitude, lsst::geom::Point< double, 2 > const &point) const
 Convert AB magnitude to instFlux (ADU).
 
double magnitudeToInstFlux (double magnitude) const
 
double getCalibrationMean () const
 Get the mean photometric calibration.
 
double getCalibrationErr () const
 Get the mean photometric calibration error.
 
bool isConstant () const
 Is this photoCalib spatially constant?
 
double getInstFluxAtZeroMagnitude () const
 Get the magnitude zero point (the instrumental flux corresponding to 0 magnitude).
 
double getLocalCalibration (lsst::geom::Point< double, 2 > const &point) const
 Get the local calibration at a point.
 
std::shared_ptr< afw::math::BoundedFieldcomputeScaledCalibration () const
 Calculates the spatially-variable calibration, normalized by the mean in the valid domain.
 
std::shared_ptr< afw::math::BoundedFieldcomputeScalingTo (std::shared_ptr< PhotoCalib > other) const
 Calculates the scaling between this PhotoCalib and another PhotoCalib.
 
bool operator== (PhotoCalib const &rhs) const
 Two PhotoCalibs are equal if their component bounded fields and calibrationErr are equal.
 
bool operator!= (PhotoCalib const &rhs) const
 Two PhotoCalibs are equal if their component bounded fields and calibrationErr are equal.
 
bool isPersistable () const noexcept override
 Return true if this particular object can be persisted using afw::table::io.
 
std::shared_ptr< typehandling::StorablecloneStorable () const override
 Create a new PhotoCalib that is a copy of this one.
 
std::string toString () const override
 Create a string representation of this object.
 
bool equals (typehandling::Storable const &other) const noexcept override
 Compare this object to another Storable.
 
virtual std::size_t hash_value () const
 Return a hash of this object (optional operation).
 
void writeFits (std::string const &fileName, std::string const &mode="w") const
 Write the object to a regular FITS file.
 
void writeFits (fits::MemFileManager &manager, std::string const &mode="w") const
 Write the object to a FITS image in memory.
 
void writeFits (fits::Fits &fitsfile) const
 Write the object to an already-open FITS object.
 

Static Public Member Functions

static std::shared_ptr< PhotoCalibreadFits (fits::Fits &fitsfile)
 Read an object from an already open FITS object.
 
static std::shared_ptr< PhotoCalibreadFits (std::string const &fileName, int hdu=fits::DEFAULT_HDU)
 Read an object from a regular FITS file.
 
static std::shared_ptr< PhotoCalibreadFits (fits::MemFileManager &manager, int hdu=fits::DEFAULT_HDU)
 Read an object from a FITS file in memory.
 
static std::shared_ptr< PhotoCalibdynamicCast (std::shared_ptr< Persistable > const &ptr)
 Dynamically cast a shared_ptr.
 

Protected Types

using OutputArchiveHandle = io::OutputArchiveHandle
 

Protected Member Functions

std::string getPersistenceName () const override
 Return the unique name used to persist this object and look up its factory.
 
void write (OutputArchiveHandle &handle) const override
 Write the object to one or more catalogs.
 
virtual std::string getPythonModule () const
 Return the fully-qualified Python module that should be imported to guarantee that its factory is registered.
 

Static Protected Member Functions

template<class T >
static bool singleClassEquals (T const &lhs, Storable const &rhs)
 Test if a Storable is of a particular class and equal to another object.
 

Related Symbols

(Note that these are not member symbols.)

std::ostreamoperator<< (std::ostream &os, Storable const &storable)
 Output operator for Storable.
 

Detailed Description

The photometric calibration of an exposure.

A PhotoCalib is a BoundedField (a function with a specified domain) that converts from post-ISR counts-on-chip (ADU) to flux and magnitude. It is defined such that a calibration of 1 means one count is equal to one nanojansky (nJy, 10^-35 W/m^2/Hz in SI units). The nJy was chosen because it represents a linear flux unit with values in a convenient range (e.g. LSST's single image depth of 24.5 is 575 nJy). See more detailed discussion in: https://pstn-001.lsst.io/

PhotoCalib is immutable.

The spatially varying flux calibration has units of nJy/ADU, and is defined such that, at a position (x,y) in the domain of the boundedField calibration and for a given measured source instFlux:

\[ instFlux*calibration(x,y) = flux [nJy] \]

while the errors (constant on the domain) are defined as:

\[ sqrt((instFluxErr/instFlux)^2 + (calibrationErr/calibration)^2)*flux = fluxErr [nJy] \]

This implies that the conversions from instFlux and instFlux error to magnitude and magnitude error are as follows:

\[ -2.5*log_{10}(instFlux*calibration(x,y)*1e-9/referenceFlux) = magnitude \]

where referenceFlux is the AB Magnitude reference flux from Oke & Gunn 1983 (first equation),

\[ referenceFlux = 1e23 * 10^{(48.6/-2.5)} \]

and

\[ 2.5/log(10)*sqrt((instFluxErr/instFlux)^2 + (calibrationErr/calibration)^2) = magnitudeErr \]

Note that this is independent of referenceFlux.

Definition at line 114 of file PhotoCalib.h.

Member Typedef Documentation

◆ OutputArchiveHandle

using lsst::afw::table::io::Persistable::OutputArchiveHandle = io::OutputArchiveHandle
protectedinherited

Definition at line 108 of file Persistable.h.

Constructor & Destructor Documentation

◆ PhotoCalib() [1/6]

lsst::afw::image::PhotoCalib::PhotoCalib ( PhotoCalib const & )
default

◆ PhotoCalib() [2/6]

lsst::afw::image::PhotoCalib::PhotoCalib ( PhotoCalib && )
default

◆ ~PhotoCalib()

lsst::afw::image::PhotoCalib::~PhotoCalib ( )
overridedefault

◆ PhotoCalib() [3/6]

lsst::afw::image::PhotoCalib::PhotoCalib ( )
inline

Create a empty, zeroed calibration.

Definition at line 127 of file PhotoCalib.h.

127: PhotoCalib(0) {}
PhotoCalib()
Create a empty, zeroed calibration.
Definition PhotoCalib.h:127

◆ PhotoCalib() [4/6]

lsst::afw::image::PhotoCalib::PhotoCalib ( double calibrationMean,
double calibrationErr = 0,
lsst::geom::Box2I const & bbox = lsst::geom::Box2I() )
inlineexplicit

Create a non-spatially-varying calibration.

Parameters
[in]calibrationMeanThe spatially-constant calibration (must be non-negative).
[in]calibrationErrThe error on the calibration (must be non-negative).
[in]bboxThe bounding box on which this PhotoCalib is valid. If not specified, this PhotoCalib is valid at any point (i.e. an empty bbox).

Definition at line 137 of file PhotoCalib.h.

139 : _calibrationMean(calibrationMean), _calibrationErr(calibrationErr), _isConstant(true) {
140 assertNonNegative(_calibrationMean, "Calibration mean");
141 assertNonNegative(_calibrationErr, "Calibration error");
142 ndarray::Array<double, 2, 2> coeffs = ndarray::allocate(ndarray::makeVector(1, 1));
143 coeffs[0][0] = calibrationMean;
144 _calibration = std::make_shared<afw::math::ChebyshevBoundedField>(
145 afw::math::ChebyshevBoundedField(bbox, coeffs));
146 }
AmpInfoBoxKey bbox
Definition Amplifier.cc:117
table::Key< double > calibrationMean
table::Key< double > calibrationErr
void assertNonNegative(double value, std::string const &name)
Raise lsst::pex::exceptions::InvalidParameterError if value is not >=0.
Definition PhotoCalib.h:69

◆ PhotoCalib() [5/6]

lsst::afw::image::PhotoCalib::PhotoCalib ( std::shared_ptr< afw::math::BoundedField > calibration,
double calibrationErr = 0 )
inline

Create a spatially-varying calibration.

Parameters
[in]calibrationThe spatially varying photometric calibration (must have non-negative mean).
[in]calibrationErrThe error on the calibration (must be non-negative).

Definition at line 154 of file PhotoCalib.h.

155 : _calibration(calibration),
156 _calibrationMean(computeCalibrationMean(calibration)),
157 _calibrationErr(calibrationErr),
158 _isConstant(false) {
159 assertNonNegative(_calibrationMean, "Calibration (computed via BoundedField.mean()) mean");
160 assertNonNegative(_calibrationErr, "Calibration error");
161 }

◆ PhotoCalib() [6/6]

lsst::afw::image::PhotoCalib::PhotoCalib ( double calibrationMean,
double calibrationErr,
std::shared_ptr< afw::math::BoundedField > calibration,
bool isConstant )
inline

Create a calibration with a pre-computed mean.

Primarily for de-persistence.

Parameters
[in]calibrationMeanThe mean of the calibration() over its bounding box (must be non-negative).
[in]calibrationErrThe error on the calibration (must be non-negative).
[in]calibrationThe spatially varying photometric calibration.
[in]isConstantIs this PhotoCalib spatially constant?

Definition at line 171 of file PhotoCalib.h.

173 : _calibration(calibration),
174 _calibrationMean(calibrationMean),
175 _calibrationErr(calibrationErr),
176 _isConstant(isConstant) {
177 assertNonNegative(_calibrationMean, "Calibration mean");
178 assertNonNegative(_calibrationErr, "Calibration error");
179 }
bool isConstant() const
Is this photoCalib spatially constant?
Definition PhotoCalib.h:441

Member Function Documentation

◆ calibrateCatalog() [1/2]

afw::table::SourceCatalog lsst::afw::image::PhotoCalib::calibrateCatalog ( afw::table::SourceCatalog const & catalog) const

Definition at line 399 of file PhotoCalib.cc.

399 {
400 std::vector<std::string> instFluxFields;
401 static std::string const SUFFIX = "_instFlux";
402 for (auto const &name : catalog.getSchema().getNames()) {
403 // Pick every field ending in "_instFlux", grabbing everything before that prefix.
404 if (name.size() > SUFFIX.size() + 1 &&
405 name.compare(name.size() - SUFFIX.size(), SUFFIX.size(), SUFFIX) == 0) {
406 instFluxFields.emplace_back(name.substr(0, name.size() - 9));
407 }
408 }
409 return calibrateCatalog(catalog, instFluxFields);
410}
afw::table::SourceCatalog calibrateCatalog(afw::table::SourceCatalog const &catalog, std::vector< std::string > const &instFluxFields) const
Return a flux calibrated catalog, with new _flux, _fluxErr, _mag, and _magErr fields.
T emplace_back(T... args)
T size(T... args)

◆ calibrateCatalog() [2/2]

afw::table::SourceCatalog lsst::afw::image::PhotoCalib::calibrateCatalog ( afw::table::SourceCatalog const & catalog,
std::vector< std::string > const & instFluxFields ) const

Return a flux calibrated catalog, with new _flux, _fluxErr, _mag, and _magErr fields.

If the input catalog already has _flux, _mag, _fluxErr, and/or _magErr fields matching instFluxFields, they will be replaced with the new fields.

Parameters
catalogThe source catalog to compute calibrated fluxes for.
instFluxFieldsThe fields to calibrate (optional). If not provided, every field ending with _instFlux will be calibrated.
Returns
A deep copy of the input catalog, with new calibrated flux and magnitude fields. Elements of instFluxFields that have _instFluxErr will be used to compute the _fluxErr and _magErr fields.
Exceptions
lsst::pex::exceptions::NotFoundErrorif any item in instFluxFields does not have a corresponding *_instFlux field in catalog.schema.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Definition at line 332 of file PhotoCalib.cc.

333 {
334 auto const &inSchema = catalog.getSchema();
335 afw::table::SchemaMapper mapper(inSchema, true); // true: share the alias map
336 mapper.addMinimalSchema(inSchema);
337
338 using FieldD = afw::table::Field<double>;
339
340 struct Keys {
341 table::Key<double> instFlux;
342 table::Key<double> instFluxErr;
343 table::Key<double> flux;
344 table::Key<double> fluxErr;
345 table::Key<double> mag;
346 table::Key<double> magErr;
347 };
348
350 keys.reserve(instFluxFields.size());
351 for (auto const &field : instFluxFields) {
352 Keys newKey;
353 newKey.instFlux = inSchema[inSchema.join(field, "instFlux")];
354 newKey.flux =
355 mapper.addOutputField(FieldD(inSchema.join(field, "flux"), "calibrated flux", "nJy"), true);
356 newKey.mag = mapper.addOutputField(
357 FieldD(inSchema.join(field, "mag"), "calibrated magnitude", "mag(AB)"), true);
358 try {
359 newKey.instFluxErr = inSchema.find<double>(inSchema.join(field, "instFluxErr")).key;
360 newKey.fluxErr = mapper.addOutputField(
361 FieldD(inSchema.join(field, "fluxErr"), "calibrated flux uncertainty", "nJy"), true);
362 newKey.magErr = mapper.addOutputField(
363 FieldD(inSchema.join(field, "magErr"), "calibrated magnitude uncertainty", "mag(AB)"),
364 true);
365 } catch (pex::exceptions::NotFoundError &) {
366 ; // Keys struct defaults to invalid keys; that marks the error as missing.
367 }
368 keys.emplace_back(newKey);
369 }
370
371 // Create the new catalog
372 afw::table::SourceCatalog output(mapper.getOutputSchema());
373 output.insert(mapper, output.begin(), catalog.begin(), catalog.end());
374
375 auto calibration = evaluateCatalog(output);
376
377 // fill in the catalog values
378 int iRec = 0;
379 for (auto &rec : output) {
380 for (auto &key : keys) {
381 double instFlux = rec.get(key.instFlux);
382 double nanojansky = toNanojansky(instFlux, calibration[iRec]);
383 rec.set(key.flux, nanojansky);
384 rec.set(key.mag, toMagnitude(instFlux, calibration[iRec]));
385 if (key.instFluxErr.isValid()) {
386 double instFluxErr = rec.get(key.instFluxErr);
387 rec.set(key.fluxErr, toNanojanskyErr(instFlux, instFluxErr, calibration[iRec],
388 _calibrationErr, nanojansky));
389 rec.set(key.magErr,
390 toMagnitudeErr(instFlux, instFluxErr, calibration[iRec], _calibrationErr));
391 }
392 }
393 ++iRec;
394 }
395
396 return output;
397}
SchemaMapper * mapper
SortedCatalogT< SourceRecord > SourceCatalog
Definition fwd.h:85

◆ calibrateImage()

MaskedImage< float > lsst::afw::image::PhotoCalib::calibrateImage ( MaskedImage< float > const & maskedImage,
bool includeScaleUncertainty = true ) const

Return a flux calibrated image, with pixel values in nJy.

Mask pixels are propagated directly from the input image.

Parameters
maskedImageThe masked image to calibrate.
includeScaleUncertaintyInclude the uncertainty on the calibration in the resulting variance?
Returns
The calibrated masked image.

Definition at line 288 of file PhotoCalib.cc.

289 {
290 // Deep copy construct, as we're mutiplying in-place.
291 auto result = MaskedImage<float>(maskedImage, true);
292
293 if (_isConstant) {
294 *(result.getImage()) *= _calibrationMean;
295 } else {
296 _calibration->multiplyImage(*(result.getImage()), true); // only in the overlap region
297 }
298 if (includeScaleUncertainty) {
299 toNanojanskyVariance(maskedImage.getImage()->getArray(), maskedImage.getVariance()->getArray(),
300 _calibrationErr, result.getImage()->getArray(),
301 result.getVariance()->getArray());
302 } else {
303 toNanojanskyVariance(maskedImage.getImage()->getArray(), maskedImage.getVariance()->getArray(), 0,
304 result.getImage()->getArray(), result.getVariance()->getArray());
305 }
306
307 return result;
308}
py::object result
Definition _schema.cc:429

◆ cloneStorable()

std::shared_ptr< typehandling::Storable > lsst::afw::image::PhotoCalib::cloneStorable ( ) const
overridevirtual

Create a new PhotoCalib that is a copy of this one.

Reimplemented from lsst::afw::typehandling::Storable.

Definition at line 266 of file PhotoCalib.cc.

266 {
267 return std::make_unique<PhotoCalib>(*this);
268}

◆ computeScaledCalibration()

std::shared_ptr< math::BoundedField > lsst::afw::image::PhotoCalib::computeScaledCalibration ( ) const

Calculates the spatially-variable calibration, normalized by the mean in the valid domain.

This value is defined, for instFlux at (x,y), such that:

\[ instFlux*computeScaledCalibration()(x,y)*getCalibrationMean() = instFluxToNanojansky(instFlux, (x,y)) \]

See also
PhotoCalib::getCalibrationMean()
Returns
The normalized spatially-variable calibration.

Definition at line 249 of file PhotoCalib.cc.

249 {
250 return *(_calibration) / _calibrationMean;
251}

◆ computeScalingTo()

std::shared_ptr< math::BoundedField > lsst::afw::image::PhotoCalib::computeScalingTo ( std::shared_ptr< PhotoCalib > other) const

Calculates the scaling between this PhotoCalib and another PhotoCalib.

The BoundedFields of these PhotoCalibs must have the same BBoxes (or one or both must be empty).

With:

  • c = instFlux at position (x,y)
  • this = this PhotoCalib
  • other = other PhotoCalib
  • return = BoundedField returned by this method the return value from this method is defined as:

    \[ this.instFluxToNanojansky(c, (x,y))*return(x, y) = other.instFluxToNanojansky(c, (x,y)) \]

Parameters
[in]otherThe PhotoCalib to scale to.
Returns
The BoundedField as defined above.
Warning
Not implemented yet: See DM-10154.

Definition at line 253 of file PhotoCalib.cc.

253 {
254 throw LSST_EXCEPT(pex::exceptions::LogicError, "Not Implemented: See DM-10154.");
255}
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition Exception.h:48

◆ dynamicCast()

Dynamically cast a shared_ptr.

Dynamically cast a shared pointer and raise on failure.

You must provide an explicit template instantiation in the .cc file for each class that inherits from PersistableFacade. Designed to work around RTTI issues on macOS with hidden symbols;

Exceptions
lsst::pex::exceptions::LogicErrorif the cast fails

param[in] ptr The pointer to be cast.

Returns
The cast pointer.
Exceptions
lsst::pex::exceptions::TypeErrorIf the dynamic cast fails.

Definition at line 218 of file Persistable.cc.

◆ equals()

bool lsst::afw::image::PhotoCalib::equals ( typehandling::Storable const & other) const
overridevirtualnoexcept

Compare this object to another Storable.

Returns
*this == other if other is a PhotoCalib; otherwise false.

Reimplemented from lsst::afw::typehandling::Storable.

Definition at line 280 of file PhotoCalib.cc.

280 {
281 return singleClassEquals(*this, other);
282}
static bool singleClassEquals(T const &lhs, Storable const &rhs)
Test if a Storable is of a particular class and equal to another object.
Definition Storable.h:151

◆ getCalibrationErr()

double lsst::afw::image::PhotoCalib::getCalibrationErr ( ) const
inline

Get the mean photometric calibration error.

This value is defined such that for some instFluxErr, instFlux, and flux:

\[ sqrt((instFluxErr/instFlux)^2 + (calibrationErr/calibration(x,y))^2)*flux = fluxErr [nJy] \]

See also
PhotoCalib::computeScaledCalibration(), getCalibrationMean()
Returns
The calibration error.

Definition at line 434 of file PhotoCalib.h.

434{ return _calibrationErr; }

◆ getCalibrationMean()

double lsst::afw::image::PhotoCalib::getCalibrationMean ( ) const
inline

Get the mean photometric calibration.

This value is defined, for instFlux at (x,y), such that:

\[ instFlux*computeScaledCalibration()(x,y)*getCalibrationMean() = instFluxToNanojansky(instFlux, (x,y)) \]

See also
PhotoCalib::computeScaledCalibration(), getCalibrationErr(), getInstFluxAtZeroMagnitude()
Returns
The spatial mean of this calibration.

Definition at line 420 of file PhotoCalib.h.

420{ return _calibrationMean; }

◆ getInstFluxAtZeroMagnitude()

double lsst::afw::image::PhotoCalib::getInstFluxAtZeroMagnitude ( ) const
inline

Get the magnitude zero point (the instrumental flux corresponding to 0 magnitude).

This value is defined such that:

\[ instFluxToMagnitude(getInstFluxAtZeroMagnitude()) == 0 \]

See also
PhotoCalib::computeScaledCalibration(), getCalibrationMean()
Returns
The instFlux magnitude zero point.

Definition at line 455 of file PhotoCalib.h.

455{ return cpputils::referenceFlux / _calibrationMean; }
const double referenceFlux
The Oke & Gunn (1983) AB magnitude reference flux, in nJy (often approximated as 3631....
Definition Magnitude.h:46

◆ getLocalCalibration()

double lsst::afw::image::PhotoCalib::getLocalCalibration ( lsst::geom::Point< double, 2 > const & point) const
inline

Get the local calibration at a point.

This value is defined such that:

\[ instFluxToNanojansky(instFlux, point) == localCalibration * inst \]

Use getCalibrationErr() to get the spatially constant error on the calibration.

Parameters
[in]pointThe position that magnitude is to be converted at.
See also
getCalibrationMean(), getCalibrationErr()
Returns
The local calibration at a point.

Definition at line 473 of file PhotoCalib.h.

473{ return evaluate(point); }

◆ getPersistenceName()

std::string lsst::afw::image::PhotoCalib::getPersistenceName ( ) const
overrideprotectedvirtual

Return the unique name used to persist this object and look up its factory.

Must be less than ArchiveIndexSchema::MAX_NAME_LENGTH characters.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 559 of file PhotoCalib.cc.

559{ return getPhotoCalibPersistenceName(); }

◆ getPythonModule()

std::string lsst::afw::table::io::Persistable::getPythonModule ( ) const
protectedvirtualinherited

Return the fully-qualified Python module that should be imported to guarantee that its factory is registered.

Must be less than ArchiveIndexSchema::MAX_MODULE_LENGTH characters.

Will be ignored if empty.

Reimplemented in lsst::afw::image::FilterLabel, lsst::afw::cameraGeom::Detector, lsst::afw::cameraGeom::DetectorCollection, lsst::afw::cameraGeom::TransformMap, lsst::afw::detection::Footprint, lsst::afw::detection::GaussianPsf, lsst::afw::geom::SkyWcs, lsst::afw::geom::SpanSet, lsst::afw::geom::Transform< FromEndpoint, ToEndpoint >, lsst::afw::geom::Transform< afw::geom::Point2Endpoint, afw::geom::GenericEndpoint >, lsst::afw::image::ApCorrMap, lsst::afw::image::CoaddInputs, lsst::afw::image::TransmissionCurve, lsst::afw::math::ChebyshevBoundedField, lsst::afw::math::Function< double >, lsst::afw::math::Function< Kernel::Pixel >, lsst::afw::math::Function< Pixel >, lsst::afw::math::Function< ReturnT >, lsst::afw::math::Kernel, lsst::afw::math::PixelAreaBoundedField, lsst::afw::math::ProductBoundedField, lsst::afw::math::TransformBoundedField, lsst::afw::math::LanczosWarpingKernel, lsst::afw::math::BilinearWarpingKernel, lsst::afw::math::NearestWarpingKernel, lsst::afw::math::WarpingControl, lsst::afw::typehandling::StorableHelper< Base >, lsst::meas::algorithms::CoaddBoundedField, lsst::meas::algorithms::CoaddPsf, lsst::meas::algorithms::KernelPsf, lsst::meas::algorithms::WarpedPsf, lsst::meas::extensions::psfex::PsfexPsf, and lsst::meas::modelfit::Mixture.

Definition at line 36 of file Persistable.cc.

36{ return std::string(); }

◆ hash_value()

std::size_t lsst::afw::typehandling::Storable::hash_value ( ) const
virtualinherited

Return a hash of this object (optional operation).

Exceptions
UnsupportedOperationExceptionThrown if this object is not hashable.
Note
C++ subclass authors are responsible for any associated specializations of std::hash.
When called on Python classes, this method delegates to __hash__ if it exists.

Reimplemented in lsst::afw::geom::polygon::Polygon, lsst::afw::image::FilterLabel, lsst::afw::image::VisitInfo, and lsst::afw::typehandling::StorableHelper< Base >.

Definition at line 44 of file Storable.cc.

44 {
45 throw LSST_EXCEPT(UnsupportedOperationException, "Hashes are not supported.");
46}

◆ instFluxToMagnitude() [1/7]

void lsst::afw::image::PhotoCalib::instFluxToMagnitude ( afw::table::SourceCatalog & sourceCatalog,
std::string const & instFluxField,
std::string const & outField ) const

Convert instFluxes in a catalog to AB magnitudes and write back into the catalog.

Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to AB magnitudes and write the results back to sourceCatalog[outField_mag].

Parameters
[in]sourceCatalogThe source catalog to get instFlux and position from.
[in]instFluxFieldThe instFlux field: Keys of the form "*_instFlux" and "*_instFluxErr" must exist. For example: instFluxField="slot_PsfFlux" will use the fields named: "slot_PsfFlux_instFlux", "slot_PsfFlux_instFluxErr"
[in]outFieldThe field to write the magnitudes and magnitude errors to. Keys of the form "*_instFlux", "*_instFluxErr", *_mag", and "*_magErr" must exist in the schema.

Definition at line 225 of file PhotoCalib.cc.

226 {
227 auto instFluxKey = sourceCatalog.getSchema().find<double>(instFluxField + "_instFlux").key;
228 auto instFluxErrKey = sourceCatalog.getSchema().find<double>(instFluxField + "_instFluxErr").key;
229 auto magKey = sourceCatalog.getSchema().find<double>(outField + "_mag").key;
230 auto magErrKey = sourceCatalog.getSchema().find<double>(outField + "_magErr").key;
231 for (auto &record : sourceCatalog) {
232 auto result = instFluxToMagnitude(record.get(instFluxKey), record.get(instFluxErrKey),
233 record.getCentroid());
234 record.set(magKey, result.value);
235 record.set(magErrKey, result.error);
236 }
237}
double instFluxToMagnitude(double instFlux, lsst::geom::Point< double, 2 > const &point) const
Convert instFlux in ADU to AB magnitude.

◆ instFluxToMagnitude() [2/7]

ndarray::Array< double, 2, 2 > lsst::afw::image::PhotoCalib::instFluxToMagnitude ( afw::table::SourceCatalog const & sourceCatalog,
std::string const & instFluxField ) const

Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to AB magnitudes.

Parameters
[in]sourceCatalogThe source catalog to get instFlux and position from.
[in]instFluxFieldThe instFlux field: Keys of the form "*_instFlux" and "*_instFluxErr" must exist. For example: instFluxField="slot_PsfFlux" will use the fields named: "slot_PsfFlux_instFlux", "slot_PsfFlux_instFluxErr"
Returns
The magnitudes and magnitude errors for the sources.

Definition at line 217 of file PhotoCalib.cc.

218 {
219 ndarray::Array<double, 2, 2> result =
220 ndarray::allocate(ndarray::makeVector(int(sourceCatalog.size()), 2));
221 instFluxToMagnitudeArray(sourceCatalog, instFluxField, result);
222 return result;
223}

◆ instFluxToMagnitude() [3/7]

Measurement lsst::afw::image::PhotoCalib::instFluxToMagnitude ( afw::table::SourceRecord const & sourceRecord,
std::string const & instFluxField ) const

Convert sourceRecord[instFluxField_instFlux] (ADU) at location (sourceRecord.get("x"), sourceRecord.get("y")) (pixels) to AB magnitude.

Parameters
[in]sourceRecordThe source record to get instFlux and position from.
[in]instFluxFieldThe instFlux field: Keys of the form "*_instFlux" and "*_instFluxErr" must exist. For example: instFluxField="slot_PsfFlux" will use the fields named: "slot_PsfFlux_instFlux", "slot_PsfFlux_instFluxErr"
Returns
The magnitude and magnitude error for this source.

Definition at line 209 of file PhotoCalib.cc.

210 {
211 auto position = sourceRecord.getCentroid();
212 auto instFluxKey = sourceRecord.getSchema().find<double>(instFluxField + "_instFlux").key;
213 auto instFluxErrKey = sourceRecord.getSchema().find<double>(instFluxField + "_instFluxErr").key;
214 return instFluxToMagnitude(sourceRecord.get(instFluxKey), sourceRecord.get(instFluxErrKey), position);
215}

◆ instFluxToMagnitude() [4/7]

double lsst::afw::image::PhotoCalib::instFluxToMagnitude ( double instFlux) const

Definition at line 190 of file PhotoCalib.cc.

190 {
191 return toMagnitude(instFlux, _calibrationMean);
192}

◆ instFluxToMagnitude() [5/7]

Measurement lsst::afw::image::PhotoCalib::instFluxToMagnitude ( double instFlux,
double instFluxErr ) const

Definition at line 203 of file PhotoCalib.cc.

203 {
204 double magnitude = toMagnitude(instFlux, _calibrationMean);
205 double error = toMagnitudeErr(instFlux, instFluxErr, _calibrationMean, _calibrationErr);
206 return Measurement(magnitude, error);
207}

◆ instFluxToMagnitude() [6/7]

Measurement lsst::afw::image::PhotoCalib::instFluxToMagnitude ( double instFlux,
double instFluxErr,
lsst::geom::Point< double, 2 > const & point ) const

Convert instFlux and error in instFlux (ADU) to AB magnitude and magnitude error.

If passed point, use the exact calculation at that point, otherwise, use the mean scaling factor.

Parameters
[in]instFluxThe source instFlux in ADU.
[in]instFluxErrThe instFlux error (standard deviation).
[in]pointThe point that instFlux is measured at.
Returns
The AB magnitude and error.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Definition at line 194 of file PhotoCalib.cc.

195 {
196 double calibration, error, magnitude;
197 calibration = evaluate(point);
198 magnitude = toMagnitude(instFlux, calibration);
199 error = toMagnitudeErr(instFlux, instFluxErr, calibration, _calibrationErr);
200 return Measurement(magnitude, error);
201}

◆ instFluxToMagnitude() [7/7]

double lsst::afw::image::PhotoCalib::instFluxToMagnitude ( double instFlux,
lsst::geom::Point< double, 2 > const & point ) const

Convert instFlux in ADU to AB magnitude.

If passed point, use the exact calculation at that point, otherwise, use the mean scaling factor.

Parameters
[in]instFluxThe source instFlux in ADU.
[in]pointThe point that instFlux is measured at.
Returns
The AB magnitude.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Definition at line 186 of file PhotoCalib.cc.

186 {
187 return toMagnitude(instFlux, evaluate(point));
188}

◆ instFluxToNanojansky() [1/7]

void lsst::afw::image::PhotoCalib::instFluxToNanojansky ( afw::table::SourceCatalog & sourceCatalog,
std::string const & instFluxField,
std::string const & outField ) const

Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to nJy and write the results back to sourceCatalog[outField_mag].

Parameters
[in]sourceCatalogThe source catalog to get instFlux and position from.
[in]instFluxFieldThe instFlux field: Keys of the form "*_instFlux" and "*_instFluxErr" must exist. For example: instFluxField="slot_PsfFlux" will use the fields named: "slot_PsfFlux_instFlux", "slot_PsfFlux_instFluxErr"
[in]outFieldThe field to write the nJy and magnitude errors to. Keys of the form "*_instFlux" and "*_instFluxErr" must exist in the schema.

Definition at line 170 of file PhotoCalib.cc.

171 {
172 auto instFluxKey = sourceCatalog.getSchema().find<double>(instFluxField + "_instFlux").key;
173 auto instFluxErrKey = sourceCatalog.getSchema().find<double>(instFluxField + "_instFluxErr").key;
174 auto nanojanskyKey = sourceCatalog.getSchema().find<double>(outField + "_flux").key;
175 auto nanojanskyErrKey = sourceCatalog.getSchema().find<double>(outField + "_fluxErr").key;
176 for (auto &record : sourceCatalog) {
177 auto result = instFluxToNanojansky(record.get(instFluxKey), record.get(instFluxErrKey),
178 record.getCentroid());
179 record.set(nanojanskyKey, result.value);
180 record.set(nanojanskyErrKey, result.error);
181 }
182}
double instFluxToNanojansky(double instFlux, lsst::geom::Point< double, 2 > const &point) const
Convert instFlux in ADU to nJy at a point in the BoundedField.

◆ instFluxToNanojansky() [2/7]

ndarray::Array< double, 2, 2 > lsst::afw::image::PhotoCalib::instFluxToNanojansky ( afw::table::SourceCatalog const & sourceCatalog,
std::string const & instFluxField ) const

Convert sourceCatalog[instFluxField_instFlux] (ADU) at locations (sourceCatalog.get("x"), sourceCatalog.get("y")) (pixels) to nJy.

Parameters
[in]sourceCatalogThe source catalog to get instFlux and position from.
[in]instFluxFieldThe instFlux field: Keys of the form "*_instFlux" and "*_instFluxErr" must exist. For example: instFluxField="slot_PsfFlux" will use the fields named: "slot_PsfFlux_instFlux", "slot_PsfFlux_instFluxErr"
Returns
The flux in nJy and error for this source.

Definition at line 162 of file PhotoCalib.cc.

163 {
164 ndarray::Array<double, 2, 2> result =
165 ndarray::allocate(ndarray::makeVector(int(sourceCatalog.size()), 2));
166 instFluxToNanojanskyArray(sourceCatalog, instFluxField, result);
167 return result;
168}

◆ instFluxToNanojansky() [3/7]

Measurement lsst::afw::image::PhotoCalib::instFluxToNanojansky ( const afw::table::SourceRecord & sourceRecord,
std::string const & instFluxField ) const

Convert sourceRecord[instFluxField_instFlux] (ADU) at location (sourceRecord.get("x"), sourceRecord.get("y")) (pixels) to flux and flux error (in nJy).

Parameters
[in]sourceRecordThe source record to get instFlux and position from.
[in]instFluxFieldThe instFlux field: Keys of the form "*_instFlux" and "*_instFluxErr" must exist. For example: instFluxField="slot_PsfFlux" will use the fields named: "slot_PsfFlux_instFlux", "slot_PsfFlux_instFluxErr"
Returns
The flux in nJy and error for this source.

Definition at line 155 of file PhotoCalib.cc.

156 {
157 auto position = sourceRecord.getCentroid();
158 auto instFluxKey = sourceRecord.getSchema().find<double>(instFluxField + "_instFlux").key;
159 auto instFluxErrKey = sourceRecord.getSchema().find<double>(instFluxField + "_instFluxErr").key;
160 return instFluxToNanojansky(sourceRecord.get(instFluxKey), sourceRecord.get(instFluxErrKey), position);
161}

◆ instFluxToNanojansky() [4/7]

double lsst::afw::image::PhotoCalib::instFluxToNanojansky ( double instFlux) const

Definition at line 136 of file PhotoCalib.cc.

136 {
137 return toNanojansky(instFlux, _calibrationMean);
138}

◆ instFluxToNanojansky() [5/7]

Measurement lsst::afw::image::PhotoCalib::instFluxToNanojansky ( double instFlux,
double instFluxErr ) const

Definition at line 149 of file PhotoCalib.cc.

149 {
150 double nanojansky = toNanojansky(instFlux, _calibrationMean);
151 double error = toNanojanskyErr(instFlux, instFluxErr, _calibrationMean, _calibrationErr, nanojansky);
152 return Measurement(nanojansky, error);
153}

◆ instFluxToNanojansky() [6/7]

Measurement lsst::afw::image::PhotoCalib::instFluxToNanojansky ( double instFlux,
double instFluxErr,
lsst::geom::Point< double, 2 > const & point ) const

Convert instFlux and error in instFlux (ADU) to nJy and nJy error.

If passed point, use the exact calculation at that point, otherwise, use the mean scaling factor.

Parameters
[in]instFluxThe source fluxinstFlux in ADU.
[in]instFluxErrThe instFlux error.
[in]pointThe point that instFlux is measured at.
Returns
The flux in nJy and error.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Definition at line 140 of file PhotoCalib.cc.

141 {
142 double calibration, error, nanojansky;
143 calibration = evaluate(point);
144 nanojansky = toNanojansky(instFlux, calibration);
145 error = toNanojanskyErr(instFlux, instFluxErr, calibration, _calibrationErr, nanojansky);
146 return Measurement(nanojansky, error);
147}

◆ instFluxToNanojansky() [7/7]

double lsst::afw::image::PhotoCalib::instFluxToNanojansky ( double instFlux,
lsst::geom::Point< double, 2 > const & point ) const

Convert instFlux in ADU to nJy at a point in the BoundedField.

If passed point, use the exact calculation at that point, otherwise, use the mean scaling factor.

Parameters
[in]instFluxThe source instFlux in ADU.
[in]pointThe point that instFlux is measured at.
Returns
The flux in nJy.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Definition at line 132 of file PhotoCalib.cc.

132 {
133 return toNanojansky(instFlux, evaluate(point));
134}

◆ isConstant()

bool lsst::afw::image::PhotoCalib::isConstant ( ) const
inline

Is this photoCalib spatially constant?

Returns
Is the calibration spatially constant?

Definition at line 441 of file PhotoCalib.h.

441{ return _isConstant; }

◆ isPersistable()

bool lsst::afw::image::PhotoCalib::isPersistable ( ) const
inlineoverridevirtualnoexcept

Return true if this particular object can be persisted using afw::table::io.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 519 of file PhotoCalib.h.

519{ return true; }

◆ magnitudeToInstFlux() [1/2]

double lsst::afw::image::PhotoCalib::magnitudeToInstFlux ( double magnitude) const

Definition at line 241 of file PhotoCalib.cc.

241 {
242 return toInstFluxFromMagnitude(magnitude, _calibrationMean);
243}

◆ magnitudeToInstFlux() [2/2]

double lsst::afw::image::PhotoCalib::magnitudeToInstFlux ( double magnitude,
lsst::geom::Point< double, 2 > const & point ) const

Convert AB magnitude to instFlux (ADU).

If passed point, use the exact calculation at that point, otherwise, use the mean scaling factor.

Useful for inserting fake sources into an image.

Parameters
[in]magnitudeThe AB magnitude to convert.
[in]pointThe position that magnitude is to be converted at.
Returns
Source instFlux in ADU.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Definition at line 245 of file PhotoCalib.cc.

245 {
246 return toInstFluxFromMagnitude(magnitude, evaluate(point));
247}

◆ operator!=()

bool lsst::afw::image::PhotoCalib::operator!= ( PhotoCalib const & rhs) const
inline

Two PhotoCalibs are equal if their component bounded fields and calibrationErr are equal.

Definition at line 517 of file PhotoCalib.h.

517{ return !(*this == rhs); }

◆ operator=() [1/2]

PhotoCalib & lsst::afw::image::PhotoCalib::operator= ( PhotoCalib && )
delete

◆ operator=() [2/2]

PhotoCalib & lsst::afw::image::PhotoCalib::operator= ( PhotoCalib const & )
delete

◆ operator==()

bool lsst::afw::image::PhotoCalib::operator== ( PhotoCalib const & rhs) const

Two PhotoCalibs are equal if their component bounded fields and calibrationErr are equal.

Definition at line 257 of file PhotoCalib.cc.

257 {
258 return (_calibrationMean == rhs._calibrationMean && _calibrationErr == rhs._calibrationErr &&
259 (*_calibration) == *(rhs._calibration));
260}

◆ readFits() [1/3]

static std::shared_ptr< PhotoCalib > lsst::afw::table::io::PersistableFacade< PhotoCalib >::readFits ( fits::Fits & fitsfile)
inlinestaticinherited

Read an object from an already open FITS object.

Parameters
[in]fitsfileFITS object to read from, already positioned at the desired HDU.

Definition at line 183 of file Persistable.h.

◆ readFits() [2/3]

static std::shared_ptr< PhotoCalib > lsst::afw::table::io::PersistableFacade< PhotoCalib >::readFits ( fits::MemFileManager & manager,
int hdu = fits::DEFAULT_HDU )
inlinestaticinherited

Read an object from a FITS file in memory.

Parameters
[in]managerManager for the memory to read from.
[in]hduHDU to read, where 0 is the primary. The special value of afw::fits::DEFAULT_HDU skips the primary HDU if it is empty.

Definition at line 205 of file Persistable.h.

◆ readFits() [3/3]

static std::shared_ptr< PhotoCalib > lsst::afw::table::io::PersistableFacade< PhotoCalib >::readFits ( std::string const & fileName,
int hdu = fits::DEFAULT_HDU )
inlinestaticinherited

Read an object from a regular FITS file.

Parameters
[in]fileNameName of the file to read.
[in]hduHDU to read, where 0 is the primary. The special value of afw::fits::DEFAULT_HDU skips the primary HDU if it is empty.

Definition at line 194 of file Persistable.h.

◆ singleClassEquals()

template<class T >
static bool lsst::afw::typehandling::Storable::singleClassEquals ( T const & lhs,
Storable const & rhs )
inlinestaticprotectedinherited

Test if a Storable is of a particular class and equal to another object.

This method template simplifies implementations of equals that delegate to operator== without supporting cross-class comparisons.

Template Parameters
TThe class expected of the two objects to be compared.
Parameters
lhs,rhsThe objects to compare. Note that rhs need not be a T, while lhs must be.
Returns
true if rhs is a T and lhs == rhs; false otherwise.
Exception Safety
Provides the same level of exception safety as operator==. Most implementations of operator== do not throw.
Note
This method template calls operator== with both arguments of compile-time type T const&. Its use is not recommended if there would be any ambiguity as to which operator== gets picked by overload resolution.

This method template is typically called from equals as:

bool MyType::equals(Storable const& other) const noexcept {
    return singleClassEquals(*this, other);
}

Definition at line 151 of file Storable.h.

151 {
152 auto typedRhs = dynamic_cast<T const*>(&rhs);
153 if (typedRhs != nullptr) {
154 return lhs == *typedRhs;
155 } else {
156 return false;
157 }
158 }

◆ toString()

std::string lsst::afw::image::PhotoCalib::toString ( ) const
overridevirtual

Create a string representation of this object.

Reimplemented from lsst::afw::typehandling::Storable.

Definition at line 270 of file PhotoCalib.cc.

270 {
271 std::stringstream buffer;
272 if (_isConstant)
273 buffer << "spatially constant with ";
274 else
275 buffer << *_calibration << " with ";
276 buffer << "mean: " << _calibrationMean << " error: " << _calibrationErr;
277 return buffer.str();
278}
T str(T... args)

◆ uncalibrateImage()

MaskedImage< float > lsst::afw::image::PhotoCalib::uncalibrateImage ( MaskedImage< float > const & maskedImage,
bool includeScaleUncertainty = true ) const

Return a un-calibrated image, with pixel values in ADU (or whatever the original input to this photoCalib was).

Mask pixels are propagated directly from the input image.

Parameters
maskedImageThe masked image with pixel units of nJy to uncalibrate.
includeScaleUncertaintyRemove uncertainty from this calibration that was previously propagated into the variance plane. Must have the same value as the parameter of the same name when calibrateImage was called on this image.
Returns
The uncalibrated masked image.

Definition at line 310 of file PhotoCalib.cc.

311 {
312 // Deep copy construct, as we're mutiplying in-place.
313 auto result = MaskedImage<float>(maskedImage, true);
314
315 if (_isConstant) {
316 *(result.getImage()) /= _calibrationMean;
317 } else {
318 _calibration->divideImage(*(result.getImage()), true); // only in the overlap region
319 }
320 if (includeScaleUncertainty) {
321 fromNanojanskyVariance(maskedImage.getImage()->getArray(), maskedImage.getVariance()->getArray(),
322 _calibrationErr, result.getImage()->getArray(),
323 result.getVariance()->getArray());
324 } else {
325 fromNanojanskyVariance(maskedImage.getImage()->getArray(), maskedImage.getVariance()->getArray(), 0,
326 result.getImage()->getArray(), result.getVariance()->getArray());
327 }
328
329 return result;
330}

◆ write()

void lsst::afw::image::PhotoCalib::write ( OutputArchiveHandle & handle) const
overrideprotectedvirtual

Write the object to one or more catalogs.

The handle object passed to this function provides an interface for adding new catalogs and adding nested objects to the same archive (while checking for duplicates). See OutputArchiveHandle for more information.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 561 of file PhotoCalib.cc.

561 {
562 PhotoCalibSchema const &keys = PhotoCalibSchema::get();
563 table::BaseCatalog catalog = handle.makeCatalog(keys.schema);
564 auto record = catalog.addNew();
565 record->set(keys.calibrationMean, _calibrationMean);
566 record->set(keys.calibrationErr, _calibrationErr);
567 record->set(keys.isConstant, _isConstant);
568 record->set(keys.field, handle.put(_calibration));
569 record->set(keys.version, SERIALIZATION_VERSION);
570 handle.saveCatalog(catalog);
571}
std::shared_ptr< RecordT > addNew()
Create a new record, add it to the end of the catalog, and return a pointer to it.
Definition Catalog.h:489
CatalogT< BaseRecord > BaseCatalog
Definition fwd.h:72

◆ writeFits() [1/3]

void lsst::afw::table::io::Persistable::writeFits ( fits::Fits & fitsfile) const
inherited

Write the object to an already-open FITS object.

Parameters
[in]fitsfileOpen FITS object to write to.

Definition at line 18 of file Persistable.cc.

18 {
19 OutputArchive archive;
20 archive.put(this);
21 archive.writeFits(fitsfile);
22}

◆ writeFits() [2/3]

void lsst::afw::table::io::Persistable::writeFits ( fits::MemFileManager & manager,
std::string const & mode = "w" ) const
inherited

Write the object to a FITS image in memory.

Parameters
[in]managerName of the file to write to.
[in]modeIf "w", any existing file with the given name will be overwritten. If "a", new HDUs will be appended to an existing file.

Definition at line 29 of file Persistable.cc.

29 {
30 fits::Fits fitsfile(manager, mode, fits::Fits::AUTO_CLOSE | fits::Fits::AUTO_CHECK);
31 writeFits(fitsfile);
32}
void writeFits(std::string const &fileName, std::string const &mode="w") const
Write the object to a regular FITS file.

◆ writeFits() [3/3]

void lsst::afw::table::io::Persistable::writeFits ( std::string const & fileName,
std::string const & mode = "w" ) const
inherited

Write the object to a regular FITS file.

Parameters
[in]fileNameName of the file to write to.
[in]modeIf "w", any existing file with the given name will be overwritten. If "a", new HDUs will be appended to an existing file.

Definition at line 24 of file Persistable.cc.

24 {
25 fits::Fits fitsfile(fileName, mode, fits::Fits::AUTO_CLOSE | fits::Fits::AUTO_CHECK);
26 writeFits(fitsfile);
27}

Friends And Related Symbol Documentation

◆ operator<<()

std::ostream & operator<< ( std::ostream & os,
Storable const & storable )
related

Output operator for Storable.

Parameters
osthe desired output stream
storablethe object to print
Returns
a reference to os
Exceptions
UnsupportedOperationExceptionThrown if storable does not have an implementation of Storable::toString.

Definition at line 174 of file Storable.h.

174 {
175 return os << storable.toString();
176}

The documentation for this class was generated from the following files: